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ABSTRACT  

Mobile ad hoc networks (MANETs) are self-configuring networks of mobile nodes connected 

by wireless links. Each node within MANET operates as an end system and a router for all other 

nodes in the network. Due to the dynamic nature of MANETs, traditional fixed network routing 

protocols cannot be used. Based on that, new routing protocols have been introduced in MANETs. 

The purpose of this paper is to examine the current state-of-the-art of the existing unicast routing 

protocols for MANETs, and compare different approaches. For the purpose of this research, 

experiments are carried out in OPNET Modeler network simulator with the usage of reactive AODV 

and proactive OLSR unicast routing protocols. Data obtained in these experiments quantify and 

compare network performance, such as throughput, delay and network load. (PDF) Comparative 

analysis of unicast routing protocols in MANET networks. [accessed Jul 09 2018]. 

1. INTRODUCTION 

       A Mobile Ad hoc Network (MANET) is a dynamically changing infrastructure less and resource-

constrained network of wireless nodes that may move arbitrarily, independent of each other. The 

transmission range of the wireless nodes is often limited, necessitating multi-hop routing to be a 

common phenomenon for communication between any two nodes in a MANET. Various routing 

protocols for unicast, multicast, multi-path and broadcast communication have been proposed for 

MANETs.  

Most of the contemporary routing protocols proposed in the MANET literature adopt a Least 

Overhead Routing Approach (LORA) according to which a communication structure (route, tree or 

CDS) discovered through a global flooding procedure would be used as long as the communication 

structure exist, irrespective of the structure becoming sub-optimal since the time of its discovery in 

the MANET. We will also adopt a similar strategy and focus only on discovering a communication 

structure on a particular network graph taken as a snapshot during the functioning of the MANET. 

Such a graph snapshot would be hereafter referred to as a ‘Static Graph’ and a sequence of such static 

graphs over the duration of the MANET simulation session would be called a   ‘Mobile Graph’.  

 

Definition: 1.1 

 A  graph G is an ordered triple (V(G),E(G),𝛙G ) consisting of   

(i)   a non-empty finite set V(G)  

(ii)   a finite set E(G) which is disjoint from V(G)  and 

(iii)   an incidence function 𝛙 G that associates with each element of E(G) an unordered pair of  

elements of   V(G). 
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The elements of  V(G) are  called  vertices of G and the  elements E(G) are called edges of G. 

          If e is an edge and 𝛙 (e)=(u,v) then we say that e is an edge joining u and v and the 

vertices u and v are called the ends of e. 

Example : 

 

G = (V(G), E(G), G) 

where 

V(G) = {v1,v2,v3,v4,v5} 

E(G) = {e1, e2, e3, e4, e5, e6} 

(e1) = v1v2 ,  (e2) = v2v3,……. 

Definition: 1.2 

            An edge having the same vertex as both its end vertices is called a self loop. 

Example : 

 
Here the edge e5 having both its end vertices v2 

Definition: 1.3 

A graph G with more than one edge associated with a given pair of vertices is called parallel 

edges. 

Example : 

 
Here e1 and e2 are parallel edges  

Definition: 1.4 

             A graph that has neither self loop nor parallel edges is called a simple graph. Example : 
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Definition: 1.5 

             A vertex vi is an end vertex of some edge ej,vi and ej are said to be incident with each other. 

Example : 

 
The edges e4, e5, e6, are incident with v3. 

Bipartite  graph                 

         A graph is bipartite if its vertices can be partitioned into two disjoint subsets U and V such that 

each edge connects a vertex from U to one from V. A partite graph is a complete bipartite graph if 

every vertex in U is connected to every vertex in V. If  U has n elements and V has m, then we denote 

the resulting complete bipartite graph by Kn,m 

Example                            

                                                         
Coloring 

                 Painting all the verices of a graph with colors suchthat no two adjacent vertices have the 

same color is called proper coloring ( or some times called coloring ) of a graph. 

Graph coloring have commonly three types 

 Edge coloring 

 Vertex coloring 

 Face coloring 

Edge Colorig  

Assignment of  colors to the edges is called Edge Colorig          (i.e., Each edge gets one color 

)           

Example 

                                              
Vertex  coloring  

Assignment of  colors to the vertex is called vertex  coloring or node Colorig (i.e., Each 

edge gets one color )     

Example 
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Chromatic number 

             The vertex chromatic number or simply the chromatic number of a finite, loop-free graph G is 

the smallest positive number k such that G is k-colorable. The chromatic number of a graph G is 

usually denoted by   (G).     

Examples                                                 

               The triangle graph has chromatic number 3. 

 
                      The cube graph has chromatic number 2. 

 
K-Edge colorable 

              A graph G is said to be k-edge colorable if its edges can be colored using up to k-colors such 

that no two edges with a vertex in common have the same color. 

Example 

 
 

 

Unicast Communication in MANETs 

There are two broad classifications of unicast routing protocols: minimum-weight based 

routing and stability-based routing. Routing protocols under the minimum-weight category have been 

primarily designed to optimize the hop count of source-destination (s-d) routes. Some of the well-

known minimum-hop based routing protocols include the Dynamic Source Routing (DSR) protocol 

[8] and the Ad hoc On-demand Distance Vector (AODV) routing protocol [16]. 

The DSR protocol is a source routing protocol that requires the entire route information to be 

included in the header of every data packet. However, because of this feature, intermediate nodes do 

not need to store up-to-date routing information in their routing tables. Route discovery is by means of 

the broadcast query-reply cycle. The Route Request (RREQ) packet reaching a node contains the list 

of intermediate nodes through which it has propagated from the source node. After receiving the first 
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RREQ packet, the destination node waits for a short time period for any more RREQ packets, then 

chooses a path with the minimum hop count and sends a Route Reply (RREP) along the selected path. 

Later, if any new RREQ is received through a path with hop count less than that of the selected path, 

another RREP would be sent on the latest minimum hop path discovered. 

Graph Theory Algorithms for Unicast Communication in MANETs 

In a graph theoretic context, we illustrate that the minimum-weight (minimum-hop) based 

routing protocols could be simulated by running the shortest-path Dijkstra algorithm [4] on a mobile 

graph (i.e. a sequence of static graphs).  

We then illustrate that the NVSP and FORP protocols could be simulated by respectively 

solving the smallest bottleneck and the largest bottleneck path problems – each of which could be 

implemented as a slight variation of the shortest path Dijkstra algorithm. In addition, we also illustrate 

that the Prim’s minimum spanning tree algorithm and its modification to compute the maximum 

spanning tree can be respectively used to determine the ‘All Pairs Smallest Bottleneck Paths’ and ‘All 

Pairs Largest Bottleneck Paths’ in a weighted network graph. 

Shortest Path Problem 

Given a weighted graph G = (V, E), where V is the set of vertices and E is the set of weighted 

edges, the shortest path problem is to determine a minimum-weight path between any two nodes 

(identified as source node s and destination node d) in the graph. The execution of the Dijkstra 

algorithm (pseudo code in Figure 1) on a weighted graph starting at the source node s results in a 

shortest path tree rooted at s. In other words, the Dijkstra algorithm will actually return the minimum-

weight paths from the source vertex s to every other vertex in the weighted graph. If all the edge 

weights are 1, then the minimum-weight paths are nothing but minimum-hop paths. 

Begin Algorithm Dijkstra-Shortest-Path (G, s) 

1 For each vertex v Є V 

2 weight [v] ← ∞ // an estimate of the minimum- 

           weight path from s to v 

3 End For 

4 weight [s] ← 0 

5 S ← Φ // set of nodes for which we know the 

     minimum-weight path from s 

6   Q ← V // set of nodes for which we know estimate of the minimum-        weight path from s 

7 While Q ≠ Φ 

8 u ← EXTRACT-MIN (Q) 

9 S ← S U {u} 

10 For each vertex v such that (u, v) Є E 

11 If weight [v] > weight [u] + weight (u, v) then 

12 weight [v] ← weight [u] + weight (u, v) 

13 Predecessor (v) ← u 
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14 End If 

15 End For 

16 End While 

17    End Dijkstra-Shortest-Path 

Data Structures used by the MaxD-CDS Algorithm and Breadth First Search 

We use the following principal data structures for the MaxD-CDS algorithm: 

(i) CDS-Node-List – includes all nodes that are members of the CDS 

(ii)     Covered-Nodes-List – includes all nodes that are in the CDS-Node-List and all nodes that 

are adjacent to at least one member of the CDS-Node-List. 

       Before we run the CDS formation algorithm, we make sure the underlying network graph 

is connected by running the Breadth First Search (BFS) algorithm [4]; because, if the underlying 

network graph is not connected, we would not be able to find a CDS that will cover all the nodes in 

the network. We run BFS, starting with an arbitrarily chosen node in the network graph. If we are able 

to visit all the vertices in the graph, then the corresponding network is said to be connected. If the 

graph is not connected, we simply continue with the static graph (snapshot of the network topology) 

collected at the next time instant and start with the BFS test. The pseudo code for BFS is shown in 

Figure 14. The run-time complexity of BFS is O(|V|+|E|). 

Input: Graph G = (V, E) 

Auxiliary Variables/Initialization: 

Nodes-Explored = Φ, FIFO-Queue = Φ 

Begin Algorithm BFS (G, s) root-node = randomly chosen vertex in V Nodes-Explored = Nodes-

Explored U {root-node} FIFO-Queue = FIFO-Queue U {root-node} while ( |FIFO-Queue| > 0 ) 

do 

front-node u = Dequeue(FIFO-Queue) // extract the first node 

for (every edge (u, v) ) do // i.e. every neighbor v of node u 

           if (v Nodes-Explored) then Nodes-Explored = Nodes-Explored U {v}             

            FIFO-Queue = FIFO-Queue U {v} Parent (v) = u 

end if end for 

end while 

if (| Nodes-Explored | = | V | ) then return Connected Graph - true else return 

Connected Graph – false 

     end if 

End Algorithm BFS 

 

 

http://www.sijshmt.com/


Scope International Journal of Science, Humanities, Management and Technology. ISSN : 2455-068X
Vol.4 Issue 3 (2018) 37 - 43. Submitted 20/06/2018. Published 16/07/2018 

43       ©2018  Dr.R.Balakumar | http://www.sijshmt.com 

 
 
 
 

 

Conclusions 

           The high-level contribution of this paper is the idea of using traditional graph theory 

algorithms, which have been taught in academic institutions at undergraduate and graduate level, to 

simulate and study the behavior of the complex routing protocols for unicast, multicast, broadcast and 

multi-path communication in MANETs.  

In the Section on Background work, we provided an exhaustive set of background 

information on the routing protocols that have been proposed for the above different communication 

problems. In the subsequent sections, we described one or more graph theoretic algorithms for 

studying each of these communication problems. 

  We chose the Dijkstra algorithm for shortest path routing as the core algorithm and 

meticulously modified it and/or adopted it to (i) find a solution for the largest bottleneck path and 

smallest bottleneck path problems, which could be used to determine a sequence of stable routes as 

well as to (ii) find a set of link-disjoint, node-disjoint or zone-disjoint routes for multi-path 

communication.  
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