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ABSTRACT 

In this thesis, we relate the notion of strongly continuous cosine families of linear operators in 

Banach space. And the existence of solutions of the semilinear second order differential initial value 

problem is proved. We establish the similar results for cosine function for operators. This 

complements gives the representation of certain second order differential operators generate the 

cosine families. In particular, this theory is discussed about oscillation criteria and Leighton’s 

oscillation theorems. 
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INTRODUCTION  

Many differential equations we find in nature are second order equations. In this help sheet 

we will demonstrate how the simplest form of the second order differential can be solved, before 

outlining the standard procedure for solving such an equation. 

It is easy to see why second order differential equations appear in engineering and physics as 

the questions are often about how objects move when forces act.  

As force directly relates to acceleration and acceleration is the second derivative of 

displacement, a second order differential equation is needed to relate force and position. It is 

surprising to find that these equations have properties which make them useful in a far wider range of 

disciplines. 

As integration is the opposite of differentiation, it would seem reasonable that we would have 

to integrate twice to solve this sort of equation. Every time we integrate we must add in a constant of 

integration.  

Therefore we expect there to be two arbitrary constants in our general solution to the 

equation. Indeed, in many physical systems we find that once we have described how the object 

moves under the action of the forces we are still free to choose a starting position and velocity for the 

object.  

In this dissertation, we discuss the nonoscillatory property of the solutions of the second order 

liner differential equation            

                           0)()(])()([  tutctutr    (1.1) 

and the second order half-liner differential equation  
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                          0)]([)(})]([)({  tutctutr    (1.2) 

where 

(i) )),(:),,([, 0  RtCcr  and   on ),[ 0 t  for some 00 t ; 

(ii) uuu p 2||)(   for some fixed number 1p . 

   Clearly, if 2p  then (1.2) reduces to (1.1). By a solution of (1.2) will be meant a real-

valued function )(tu  which is not identically zero on ),[ 0 t  and satisfies (1.2) 

Equations (1.1) or (1.2) is said to be nonoscillatory in ),[ 0 t  if no solution of equations (1.1) 

or (1.2) vanishes more than once in this interval. The equation (1.1) or (1.2) will be said to be 

oscillatory if one (and therefore all) of its solutions have an infinite number of zeros on ),[ 0 t . 

Our main concern will be to obtain nonoscillatory (or oscillatory) criteria for equation (1.1) or 

(1.2), that is, conditions on the functions )(tr , )(tc  and   from which conclusions may be drawn as 

to the nonoscillatory (or oscillatory) character of equation (1.1) or (1.2). There exists an entersive 

literature on this subject, see, for example, [1-14].  

In [8], Li and Yeh obtained some nonoscillatory criteria of the second order differential 

equation (1.1) by using the subsituation 
)(

)(
)(

ta

tu
tw  . In this note, we first will use another 

method for equation (1.1).  

Using this result, we improve some results in [3,4,8,10]. In the third chapter, we extend a 

Leighton oscillatory criteria from equation (1.1) to the second order half-liner differential equation 

(1.2). 

  

PRELIMINARIES 

Definition: 

 A mapping A of a vector space X  into a vector space Y is called a linear operator if  

  1 1 2 2 1 1 2 2( )A x x Ax Ax       

for all 
1 2,x x  in X and all real 

1 2,  . 

Definition:  

A measurable function defined on [0, 1] is said to belong to the space  

[0,1]p pL L  if         
1

0
| |pf 

.
 

Definition:  

 Let C(t) be a strongly continuous cosine family C(t), t  R. We define a linear bounded 

operator 
2: (0, ; )L T X X   by 

0)( tr
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0

( ) ( )
T

p S T t p t dt    ,for ( )p   
2(0, ; )L T X   

where S(t) is the associated sine family of C(t). 

Definition:  

 A complete normed linear space is called a Banach space. 

Definition: 

 The nonempty subset KT(f) in X consisting of all terminal  states of (1.1) at time T is called the 

reachable set at T of the system (1.1) starting at 0.
  

 2

0 0 0 0( , ) ( ; , ;0, ) : (0, ; )TK x y x T x y u u L T U 

 2

0 0 0 0( , ) ( ; , ; , ) : (0, ; )TK x y x T x y f u u L T U   

Definition:  

Let X be a Banach space. A one parameter family T(t), 0 t    of bounded linear operators from 

X  into X  is a semigroup of bounded linear operators on X if  

(i) T(0) = I, (I is the identity operator on X.) 

(ii) T(t + s) = T(t) T(s) for every , 0t s  . 

Definition: 

(1) A semigroup T(t), 0 t    of bounded linear operators on X is a strongly continuous 

semigroup of bounded linear operators if  

(2)   0
lim ( )
t

T t x x



, for every x X . 

(3)  A strongly continuous semigroup of bounded linear operators on X will be called a 

semigroup of class or simply a C0 semi group. 

STRONGLY CONTINUOUS COSINE FAMILY OF A DIFFERENTIAL EQUATION 

Definition: 

 A one parameter family C(t), t  R, of bounded linear operators mapping the Banach space 

X  into itself is called a Strongly continuous cosine family if 

  (C1) ( ) ( ) 2 ( ) ( )C s t C s t C s C t     for all ,s t R   

  (C2) (0)C I  

  (C3) ( )C t x  is Continuous in t on R for each fixed x  X . 

If C(t), t  R, is a strongly continuous cosine family in X , then S(t), t R,  is the one 

parameter family of operators in X defined  by 

 ,( ) ( ) ,
t

o
S t x C s x ds x X t R    

Definition:  

The infinitesimal generator of a strongly continuous cosine family C(t),       t  R, is the 

operator A : X  X defined by   

  

2
( )

2
0

d
Ax C t x

dt t





 

where  

D(A)  = {x  X /C(t)x is a twice continuously differentiable function of t} 
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E = {x  X /C(t)x is a once continuously differentiable function of t}. 

Lemma:2.1  

 If C(t), t  R, is a strongly continuous cosine family in X, then 

(i) There exist constants 1k   and 0w   so that 

 

2

1

| |

| |

1 2 1 2

( )

( ) ( ) ,

wt

t
w s

t

C t k e for all t R and

S t S t k e ds for all t t R

 

  

     

(ii) If x  E, then S(t) x  D(A) and 

                              / ( ) ( )d dt C t x AS t x . 

Proof: 

 (i) by definition strongly continuous cosine family of a equation 

 
0

( ) ( )
t

S t x C s x ds  ,  ,x X t R   

 
1

1
0

( ) ( )
t

S t x C s x ds  , 1,x X t R      (1)   

2

2
0

( ) ( )
t

S t x C s x ds  , 
2,x X t R      (2) 

From equations (1) and (2) we have 

 
1 2

1 2
0 0

( ) ( ) ( ) ( )
t t

S t x S t x C s x ds C s x ds     

 
2

1

0

0
( ) ( )

t

t
C s x ds C s x ds     

    
2

1
1 2( ) ( ) ( )

t

t
S t S t x C s x ds    

 
2

1
1 2( ) ( ) ( )

t

t
S t S t x C s x ds    

2

1
1 2( ) ( ) ( )

t

t
S t S t x x C s x ds    

2

1
1 2( ) ( ) ( )

t

t
S t S t C s xds    

Given that 

   |C(t)|   k ew|t|,  for all t R  

 
2

1

| |

1 2( ) ( )
t

w s

t
S t S t k e ds    

(ii) Given that x  E 

 C(t) x is a once continuously differentiable function of t. 

 ( )
d

C t x
dt

 exists finitely 

 ( )
d d

C t x
dt dt

 
 
 

exists finitely 
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 

2

2
( )

d
C t x

dt
 exists 

 C(t) x is a twice continuously differentiable function of t. 

 ( ) ( )
t

o
S t x C s x ds  is also twice continuously differentiable function of t. 

 S(t) x  D(A) 

Therefore, if x  E then S(t) x  D(A). 

Next we have to prove ( ) ( )
d

C t x AS t x
dt

 
 

 
 

By definition of infinitesimal generator of a strongly continuous cosine family C(t),, 

      

2

2

0

( )
t

d
Ax C t x

dt


  

      

2

2

0

( )
t

d
Ax x C t

dt


  

       

2

2

0

( )
t

d
A C t

dt


  

 
0

( )
t

d
S t

dt 

   

0
( )

t
C t


   

(0)C   

I   

       A = -1       (3) 

( ) ( )
d

C t x S t x
dt

   

   ( 1) ( )S t x   

       ( ) ( )
d

C t x AS t x
dt

                                      

Hence the  proof 

Remark: 1 

Let C(t), t R , be a strongly continuous cosine family in X with infinitesimal generator A. If 

:g R X  is continuously differentiable, 1 ( )x D A , 
2x E  and 

  
1 2

0
( ) ( ) ( ) ( ) ( ) ,

t

x t C t x S t x S t s g s ds t R     . 

then ( ) ( )x t D A  for t R , x is twice continuously differentiable, and x satisfies 

  1 2( ) ( ) ( ), (0) , (0)x t Ax t g t x x x x     . 

Remark : 2 

 Let T(t) be a C0 semigroup and let A be its infinitesimal generator. Then prove that 
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 (a) For x  X,  
0

1
lim ( ) ( )

t h

th
T s xds T t x

h




     

 (b) For x  X,  
0

( ) ( )
t

T s xds D A  and  0
( ) ( )

t

A T s xds T t x x   

Note:  

 We consider the following mild solution of equation (1.1) 

  
0 0

0 0

0

( ) ( ) ( ) ( ) ( , , ( ))

( ) ( )

t s

t

x t C t x S t y S t s f s x d ds

S t s Bu s ds

     

 

 


     

OSCILLATION CRITERIA FOR EQUATION  

Let  )(tu  be a solution of (1.1). According to the Kummer transformation (see Kwong and 

Zettl [5] or Willett [14] ), we define  

)(

)(
)(

ta

tu
tw           on     ),[ 0 t , 

where )),0(),,([)( 0

2  tCta  is a given function. Then (1.1) is transformed into 

                     0)()())()()((  twttwtrta    (1) 

where ]))()(()()()()[(:)( 2  tftrtftrtctat  and 
)(2

)(
:)(

ta

ta
tf


 .  

Hence, equation (1.1), (1) and the following differential equation are equivalent: 

1 1

2

( ( ) ( ) ( ) ( )) ( )[ ( )

( ) ( ) ( ) ( ( ) ( ) ( )) ] ( ) 0

a t a t r t v t a t t

a t r t g t a t r t g t v t

  

  
 (2) 

where )),0(),,([)( 0

2

1  tCta  and 
)(2

)(
)(

1

1

ta

ta
tg   on ),[ 0 t .  

Using these equivalent relations, Li and Yeh [8] established the following nonoscillatory 

characterization for equation (1.1) as follows: 

Theorem: 3.1  

Equation (1.1) is nonoscillatory if and only if one of the following conditions holds:  

(a) there exists a function )),,([ RTCf   for some 0tT   such that  

                               0))()(()()()( 2  tftrtftrtc            on     ),[ 0 t .  

(b) there exists a function )),,([1 RTCv   for some 0tT   such that  

                               0))()()(()()()()( 2  tvtrtattvtrtc  , Tt  . 

where )),0(),,([)( 0

2  tCta  is a given function and 

]))()(()()()()[()( 2  tftrtftrtctat . 
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Clearly, condition (b) is condition (a) if 1)( ta .  

We also have the following observation: 

If 0)( tc  for t  large enough, then equation (1.1) is nonoscillatory. Suppose that “ 0)( tc  

for t  large enough” does not hold. If we can find a , )),0(),,([ 0

2

1  tCa  such that the 

coefficient of )(tw  and )(tv  in (1) or (2) is nonpositive, then equation (1.1) is nonoscillatory. 

Using Theorem 3.1 Li and Yeh [8] obtained many nonoscillatory criteria for equation (1.1). In 

this chapter, we use another method to derive Theorem 3.1. Using this result, we establish some 

nonoscillatory criteria which generalize some results of Hille [3], Kneser [4] and Li-Yeh [8]. An 

alternative proof of the Sturm comparison theorem [10] is also given. For other related results, we 

refer to [2,6,10]. 

Throughout this chapter, we assumed that )),0(),,([)( 0

2  tCta  is a given function,  

)(2

)(
:)(

ta

ta
tf


   and  

))(
)(

)(
)()((]))()(()()()()[(:)(

2
2 tv

tr

tv
tctatftrtftrtctat  .  

Hence  

)()(:)( tftrtv  . 

Now, we can state and prove our main result as follows: 

Leighton’s  oscillation 

In 1950, Leighton [6] showed the following oscillation criterion: 

Leighton’s Oscillation Theorem.  

If 


 dttcdt
tr

)(
)(

1
, then equation (1.1) is nonoscillatory. 

In this chapter, we will extend Leighton’s Oscillation Theorem to the second order half-linear 

ordinary differential equation (1.2) by using the Coles’ technique [1]. 

Theorem: 4.1  

If 





 dttrdttc q )()( 1
, where 1

11


qp
, then equation (1.2) is oscillatory. 

Proof.  

Suppose not.  

Then (1.2) has a nonoscillatory solution 0)( tu  on ),[ T  for some 0tT  .  

Define  

))((

))(()(
)(

tu

tutr
tv



 
 ,      Tt  . 

Then, for Tt  , 

))((

))(())(()(
)()(

2 tu

tututr
tctv



 
  

           
)(

)()()1(|)(|)()(
)(

22

22

tu

tutuptututr
tc

p

pp



 
  

           
)(

|)(|)()1(
)(

tu

tutrp
tc

p

p
  
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1

1

1
1

1

]
)(

|)(|)(
)[()1()( 






 
 p

p

p

p
p

p

tu

tutr
trptc  

           
qq tvtrptc |)(|)()1()( 1  

Thus, for Tt  , 

0|)(|)()1()()( 1   qq tvtrptctv .   (1) 

It follows from (1) that, for Tt  , 

dssvsrpdssctvtv qq
t

t

t

t
|)(|)()1()()()( 1

0
00

  . 

Since 


dttc )( , we can always find 01 tt   such that  

 
t

t
dssctv

0

0)()( 0
 for all ),[ 1  tt .  

Thus 

dssvsrptv qq
t

t
|)(|)()1()( 1

0

   for all 1tt  .  

Let 

dssvsrptR qq
t

t
|)(|)()1(:)( 1

0

  ,  

Then 0)( tR , )(|)(| tRtv qq  and 

)()()1(|)(|)()1()( 11 tRtrptvtrptR qqqq   , for 01 ttt    

Thus, 

)()1(
)(

)( 1 trp
tR

tR q

q




. 

Integrating it from 1t  to t , we have 

 










 t

t

t

t

qq

q

qq
q

dssRsrp
sR

sdR
tRtR

qq

tR

1 1

)()()1(
)(

)(
))()((

1

1

1

)( 1

1

111

1

 

Letting t , 













1

)()1(
1

)( 11

1

t

q
q

dssrp
q

tR
, 

which is a contradiction.  

Thus (1.2) is oscillatory. 

Remark:1  

Let 2p . Then Theorem 4.1 reduces to Leighton’s Oscillatory Theorem. 

Using Leighton’s Oscillatory Theorem, we have the following: 

Corollory:1  

Let a , )),0(),,([ 0

2

1  tCa . If either 




 dttdt
trta

)(
)()(

1
  

or 




 dttgtrtatgtrtattadt
trtata

]))()()(()()()()()[(
)()()(

1 2

11

  
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where )(t  and )(tg  are defined as in chapter 1, then equation (1.1) is oscillatory. 

CONCLUSION 

 There is no cosine families for an invariant space. So, the limitations of these families are 

not authentic. We note that the same family considered as acting on the larger banach space of 

bounded, uniformly continuous functions vanishing at 0, belongs to C. 

While this result and that of examples are similar in content. There is a difference between the 

arguments used for their establishment. Hence we gave the existence and uniqueness of solutions for 

second order differential equations. In this present research, the result is generalized by the cosine 

family of oscillation criterion is nonoscillatory. 
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