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ABSTRACT: 

 In this paper we discussed all positive integer solutions of the equation 𝑥2 − 𝑑𝑦2 = ±1 and 𝑥2 −

𝑑𝑦2 = ±4 are given in terms of Pell Fibonacci and Pell Lucas equation. 
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INTRODUCTION: 

 In mathematics, a Diophantine equation is a polynomial equation in two or more unknowns such that 

only the integer solutions are searched or studied. In Diophantine equation, 𝑥2 − 𝑑𝑦2 = ±𝑁  is a Pell’s 

equation[1]. Let 𝑑 ≠ 1 be a positive nonsquare integer and N- be any fixed positive integer[2]. Pell’s equation 

is named after the English mathematician John Pell[3]. It was studied by Brahmagupta in the 7th century as well 

as by Fermat in the 17th century. The Pell equation has infinitely many integer solutions (𝑥𝑛 , 𝑦𝑛) for 𝑛 ≥ 1 [3]. 

The first nontrivial positive integer solution (𝑥1 , 𝑦1) of this equation is called the fundamental solution, 

The aim of this Paper is to study an application of continued fraction for some kind of Pell’s equation 

and  the salient aspects of the subject matter in four sections. 

Section 1 and Section 2 contains preliminaries and basic theorem of solutions of the Pell equations 

𝑥2 − 𝑑𝑦2 = 𝑁 [4].  

Section 3 deals with to find the fundamental solution of the equation 

 𝑥2 − (𝑘2 + 𝑘)𝑦2 = 2𝑡  and generalized the solution. 

 Section 4 deals with to find the fundamental solution of the equation 

 𝑥2 − (𝑎2𝑏2 + 2𝑏)𝑦2 = 𝑁, when 𝑁 ∈ {± 1, ±4}, and generalized the solution through Fibonacci and Lucas 

sequences. 

 

RELIMINARIES and BASIC DEFINITIONS 

Definition 2.1 Let  𝑎0, 𝑎1, … , 𝑎𝑚 − be real numbers. Then  

𝑎0 +
1

𝑎1 +
1

𝑎2 + ⋯
1

𝑎𝑚−1 +
1

𝑎𝑚

 

is called a finite continued fraction[8] and is denoted by  [𝑎0, 𝑎1, … , 𝑎𝑚]. 

Definition 2.2 If the chain of fractions does not stop, then it is called an infinite continued fraction[8]. 

Definition 2.3 (a) For 𝑛 ≤ 𝑚 ,    [𝑎0, 𝑎1, … , 𝑎𝑛] − is called 𝒏𝒕𝒉 convergent[7] to                                    [𝑎0,

𝑎1, … , 𝑎𝑚]. (b)  Define two sequences of real numbers, (𝑝𝑛) and  (𝑞𝑛), recursive as follows,(i) 𝑝−1 =

1,      𝑝0 =  𝑎0    and     𝑝𝑛 =  𝑎𝑛 𝑝𝑛−1 + 𝑝𝑛−2  (ii) 𝑞−1 = 0 ,    𝑞0 = 1,       and    𝑞𝑛 =  𝑎𝑛 𝑞𝑛−1 +  𝑞𝑛−2 .   
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Definition 2.4 Let 𝛼 − be a real number. For 𝑛 = 0,1,2, … define a recursive algorithm as follows, 𝛼0 =

 𝛼 ,     𝑎𝑛 =  |𝛼𝑛|      and      𝛼𝑛 =  𝑎𝑛 +
1

𝛼𝑛+1
 , where,  𝛼𝑛 , 𝑎𝑛  ≥ 1 ,  for  𝑛 ≥ 1. 

 Given positive 𝑚,   𝛼 = [𝑎0, 𝑎1, … , 𝑎𝑚−1, 𝑎𝑚]. It is called mth continued fraction [7] of 𝛼 . 

Definition 2.5 Let 𝛼 − be an irrational number. 𝛼 − is called a quadratic irrational if it is a root of integer 

polynomial of degree two.  

 The other root 𝛽 − is called a conjugate of  𝛼 . 

Definition 2.6 Let  [𝑎0, 𝑎1, … , 𝑎𝑛, … ] − be a continued fraction such that 𝑎𝑛 =  𝑎𝑛+𝑙  for all sufficiently large 

𝑛 and a fixed positive integer 𝑙.  Then it is periodic and 𝑙 − is called a period. 

 

SOLUTIONS OF THE PELL EQUATIONS  

 𝒙𝟐 − (𝒌𝟐 + 𝒌)𝒚𝟐 = 𝑵,    𝑾𝒉𝒆𝒏   𝑵 ∈ 𝟐𝒕 

 In this work we will define by recurrence an infinite sequence of positive integer solutions of the Pell 

equation 𝑥2 − 𝑑𝑦2 = 2𝑡, where 𝑑 = 𝑘2 + 𝑘  with  𝑘 ≥ 1  an integer and 𝑡 ≥ 0 is also an integer. First we 

consider the case 𝑡 = 0. 

 That is, the classical Pell equation, 𝑥2 − (𝑘2 + 𝑘)𝑦2 = 1 . 

 MAIN RESULTS 

Theorem 3.1 Let  𝑑 = 𝑘2 + 𝑘  with 𝑘 ≥ 1. Then, 

(1) The continued fraction expansion of  √𝑑  is, 

√𝑑 =   {
   [1 ; 2̅]                               if  𝑘 = 1,

      [𝑘 ; 2, 2𝑘̅̅ ̅̅ ̅̅  ]                         otherwise         
 

(2)  The fundamental solution of  𝑥2 − 𝑑𝑦2 = 1  is (𝑥1 , 𝑦1) = (2𝑘 + 1, 2). 

(3)  For  𝑛 ≥ 4, 

𝑥𝑛 = (4𝑘 + 3)(𝑥𝑛−1 − 𝑥𝑛−2) + 𝑥𝑛−3 

𝑦𝑛 = (4𝑘 + 3)(𝑦𝑛−1 − 𝑦𝑛−2) + 𝑦𝑛−3 

Proof. 

 Let 𝑘 = 1,         √𝑘2 + 𝑘  =  √1 + 1    =  √2   

𝑥2 − 2𝑦2 = 1. 

The simple continued fraction of √2  is 

√2  = [1 ;  2̅]. 

Now, let  𝑘 ≥ 2 , 

                 √𝑘2 + 𝑘   =  𝑘 + √𝑘2 + 𝑘 – 𝑘 

                                    =  𝑘 +
1

1

√𝑘2 + 𝑘 − 𝑘
 
 

                                    =  𝑘 +
1

√𝑘2 + 𝑘  + 𝑘
𝑘2 + 𝑘 − 𝑘2

 

                                    =  𝑘 +
1

√𝑘2 + 𝑘 + 𝑘
𝑘

 

                                    =  𝑘 +
1

√𝑘2 + 𝑘 + 2𝑘 − 𝑘
𝑘
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                                    =  𝑘 +
1

2 +
√𝑘2 + 𝑘 − 𝑘

𝑘

 

                                    =  𝑘 +
1

2 +
1
𝑘

√𝑘2 + 𝑘 − 𝑘

 

                                     =  𝑘 +
1

2 + 
1

𝑘(√𝑘2 + 𝑘 + 𝑘)

𝑘2 + 𝑘 − 𝑘2

 

                                    =  𝑘 +
1

2 +
1

√𝑘2 + 𝑘 + 2𝑘 − 𝑘

  

                                   =  𝑘 +
1

2 +
1

2𝑘 +
1
1

√𝑘2 + 𝑘 − 𝑘

 

                                   =  𝑘 +  
1

2 +  
1

2𝑘 +
1

2 +
1

2𝑘 +
1
1

√𝑘2 + 𝑘 − 𝑘

 

Therefore, the continued fraction expansion of √𝑘2 + 𝑘 − is √𝑘2 + 𝑘 = [𝑘 ;  2 , 2𝑘̅̅ ̅̅ ̅̅ ̅] . 

(2)  The case 𝑘 = 1 is clear. 

Since, (𝑥1, 𝑦1) = (3 , 2) is minimum solution of 𝑥2 − 2𝑦2 = 1. 

𝑘 ≥ 2  ⇒  𝑎0 = 𝑘, 𝑎1 = 2 

By the definition (2.2.3) 

             (𝑥1, 𝑦1)  =  (𝑝1, 𝑞1) 

                             =  (1 + 𝑎0𝑎1 , 𝑎1) 

                             =  (1 + 2𝑘, 2) 

Therefore, the fundamental solution of the equation 

  𝑥2 − 2𝑦2 = 1  is (1 + 2𝑘 , 2). 

(3) For  𝑛 ≥ 4 . 

 The fundamental solution of 𝑥2 − (𝑘2 + 𝑘)𝑦2 = 1  is  (𝑥1 , 𝑦1) . 

 The other solutions of the equation are (𝑥𝑛 , 𝑦𝑛), which is derived by using the equalities 

(𝑥𝑛 + √𝑑𝑦𝑛)  =  (𝑥𝑛 + √𝑑𝑦𝑛)
𝑛

 ,        for    𝑛 ≥ 2. 

In other words, 

(
𝑥𝑛

𝑦𝑛
) =  (

𝑥1 𝑑𝑦1

𝑦1 𝑥1
)

𝑛

(
1

0
)  ,      for   𝑛 ≥ 2. 

Therefore it can be shown by induction on n that, 

  𝑥𝑛 = (4𝑘 + 3)(𝑥𝑛−1 − 𝑥𝑛−2) + 𝑥𝑛−3    and 

  𝑦𝑛 = (4𝑘 + 3)(𝑦𝑛−1 − 𝑦𝑛−2) + 𝑦𝑛−3 ,      for   𝑛 ≥ 4. 
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This proof is complete.                  

 Now, the general case, 𝑥2 − (𝑘2 + 𝑘)𝑦2 = 2𝑡  ,    for   𝑡 ≥ 1, we have consider the two cases.    

 Let 𝑘 = 1 and  𝑘 ≥ 2. 

(𝑥𝑛 , 𝑦𝑛) − be the integer solutions of 𝑥2 − (𝑘2 + 𝑘)𝑦2 = 1   and  

(𝑢𝑛 , 𝑣𝑛) − be the integer solutions of 𝑥2 − (𝑘2 + 𝑘)𝑦2 = 2𝑡.  

 

SOLUTIONS OF THE PELL EQUATIONS  

𝒙𝟐 − (𝒂𝟐𝒃𝟐 + 𝟐𝒃)𝒚𝟐 = 𝑵,    𝑾𝒉𝒆𝒏   𝑵 ∈ {± 𝟏 , ±𝟒} 

 In this chapter, we get all positive integer solutions of                                 

    𝑥2 − (𝑎2𝑏2 + 2𝑏)𝑦2 = ±1  and  𝑥2 − (𝑎2𝑏2 + 2𝑏)𝑦2 = ±4  are given interms of the generalized Fibonacci 

and Lucas sequences. 

MAIN RESULTS 

Theorem 4.1 Let  𝑑 = 𝑎2𝑏2 + 2𝑏 .  Then  √𝑑 = [𝑎𝑏 , 𝑎 , 2𝑎𝑏̅̅ ̅̅ ̅̅ ̅̅ ̅]. 

Proof.  

                √𝑑  =  √𝑎2𝑏2 + 2𝑏  

                       =   𝑎𝑏 +  √𝑎2𝑏2 + 2𝑏 − 𝑎𝑏 

                      =   𝑎𝑏 +  
1

1

√𝑎2𝑏2 + 2𝑏 − 𝑎𝑏

 

                      =   𝑎𝑏 +  
1

√𝑎2𝑏2 + 2𝑏 + 𝑎𝑏
2𝑏

 

                      =   𝑎𝑏 +  
1

2𝑎𝑏
2𝑏

+
√𝑎2𝑏2 + 2𝑏 − 𝑎𝑏

2𝑏

 

                     =   𝑎𝑏 +  
1

𝑎 +
1

2𝑏

√𝑎2𝑏2 + 2𝑏 − 𝑎𝑏

 

                    =   𝑎𝑏 +  
1

𝑎 +
1

2𝑎𝑏 +
1

𝑎 +
1

2𝑎𝑏
  …

 

           √𝑑  =  √𝑎2𝑏2 + 2𝑏  =  [𝑎𝑏 , 𝑎 , 2𝑎𝑏̅̅ ̅̅ ̅̅ ̅̅ ̅]. 

This proof is complete.                  

Theorem 4.2.2. 

 Let  𝑑 = 𝑎2𝑏2 + 2𝑏 .  If  𝑏 ≠ 1,  then  √𝑑 = [𝑎𝑏 , 2𝑎 , 2𝑎𝑏̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ]  and if  𝑏 = 1  then 

  √𝑑 = [𝑎 , 2𝑎̅̅̅̅ ]. 

Proof. 

                √𝑑  =  √𝑎2𝑏2 + 𝑏  

                       =   𝑎𝑏 +  √𝑎2𝑏2 + 𝑏 − 𝑎𝑏 
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                      =   𝑎𝑏 +  
1

1

√𝑎2𝑏2 + 𝑏 − 𝑎𝑏

 

                    =   𝑎𝑏 +  
1

2𝑎 +
1

2𝑎𝑏 +
1

2𝑎 +
1

2𝑎𝑏
  …

 

           √𝑑  =  √𝑎2𝑏2 + 𝑏  =  [𝑎𝑏 , 2𝑎 , 2𝑎𝑏̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ]. 

If  𝑏 = 1,  then, 

                    √𝑑  =  [𝑎 , 2𝑎̅̅̅̅ ]. 

This proof is complete.  

                 

CONCLUSION: 

 In this Paper, by using continued fraction expansion of √𝑑 , we find fundamental solution of the 𝑥2 −

𝑑𝑦2 = ±1 , where 𝑎, 𝑏 and 𝑐 are natural numbers and 𝑑 = 𝑎2𝑏2𝑐2 + 2𝑎𝑏 or 

 𝑎2𝑏2𝑐2 − 2𝑎𝑏. Moreover, we investigate Pell equation of the form  𝑥2 − 𝑑𝑦2 = 𝑁 when 

 𝑁 = ±1, ±4 and we are looking for positive integer solutions in 𝑥 and 𝑦. We get all positive integer solutions 

of the Pell equations 𝑥2 − 𝑑𝑦2 = 𝑁 in terms of generalized Fibonacci and Lucas sequences when 𝑁 = ±1, ±4 

and 𝑎2𝑏2𝑐2 + 2𝑎𝑏,  𝑎2𝑏2𝑐2 − 2𝑎𝑏.  Finally, all positive integer solutions of the equations  𝑥2 − 𝑑𝑦2 = ±1  

and 𝑥2 − 𝑑𝑦2 = ±4  are given in terms of Pell - Fibonacci and Pell-Lucas sequences. 
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