
Scope International Journal of Science, Humanities, Management and Technology. ISSN : 2455-068X 

Vol.3 Issue 3 (2017) 22 - 36. Submitted 5/07/2017. Published 14/09/2017 

22   ©2017 N.Jayakumar | http://www.sijshmt.com 

 

 

 

Economic Power Dispatch Considering Multi-Fuel Source and 

Prohibited Operating Zones using Ant Lion Optimizer 

N. JAYAKUMAR 

Department of Electrical Engineering, Faculty of Engineering and Technology,  

Annamalai University, Annamalainagar, Chidambaram-608 002 

Tamilnadu, India 

Email: jayakumar_382@yahoo.co.in 

 

ABSTRACT:  

  The electrical power generation from fossil fuel releases several contaminants into the air and 

this become excrescent if the generating unit is fed by Multiple Fuel Sources (MFS).The ever 

more stringent environmental regulations have forced the utilities to produce electricity at the 

cheapest price with the minimum level of pollutants. The restriction in generator operations 

increases the complexity in plant operations. The cost effective responsive operations in MFS 

environment can be recognized as a multi-objective constrained optimization problem. The Ant 

Lion Optimizer (ALO) has been chosen as an optimization tool and its application for solving the 

MFS dispatch problems. The intended algorithm is implemented on the standard test systems 

considering the prevailing operational constraints such as valve-point loadings and prohibited 

operating zones. 

Keywords: Ant Lion Optimizer, Economic Dispatch, Multiple Fuel Sources, Prohibited 

Operating Zone 

MULTI-FUEL POWER GENERATION DISPATCH (MFPGD) 

In practical conditions of power system operations, different Fuel Sources (FS) like coal, natural 

gas and oil supply certain generating units. The cost function for each fuel type is derived and is 

segmented as Piecewise Quadratic Cost Function (PQCF) for a generating unit fed by Multiple 

Fuel Sources (MFS). These generating units face with the dilemma of finding out the most 

economical fuel to fire. Further, the operational complexity is increased while considering the 

valve-point discontinuities and prohibited operating zones.  

The solution approaches addressing this problem can be categorized into mathematical and 

heuristic methods.  

The classical optimization methods, including Hierarchical Method (HM) and artificial 

neural network models such as Hopfield Neural Network (HNN) and Adaptive HNN (AHNN) 

models have been reported to address the economic operation of MFS (Shoults & Mead, 1984; 

Lin & Viviani, 1984; Park et al., 1993; Lee et al., 1998). The main drawback of these methods is 

the exponentially growing time for large scale systems with non-convex constraints. 

The meta-heuristic search techniques such as Genetic Algorithm (GA) (Baskar et al., 2003), 

Evolutionary Programming (EP) (Jayabarathi et al., 2005), Particle Swarm Optimization (PSO) 

(Park et al., 2005), Artificial Immune System (AIS) (Panigrahi et al., 2007), Differential 

Evolution (DE) (Noman & Iba, 2008), Artificial Bee Colony Algorithm (ABC) (Hemamalini & 

Simon, 2010) and Biogeography Based Optimization (BBO) (Bhattacharya & Chattopadhyay, 
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2011) have been reported for solving ED with PQCF.  The modified versions of heuristic search 

techniques such as hybrid Real Coded GA (RCGA), fast EP, improved fast EP, Improved GA – 

Multiplier Updating (IGA-MU), New PSO-Local Random Search (NPSO-LRS), penalty 

parameter less PSO/DE and New Adaptive PSO (NAPSO) have been reported to solve multi-fuel 

power dispatch problem (Baskar et al., 2003, Jayabarathi et al., 2005; Park et al., 2005; Chiang, 

2005; Selvakumar & Thanushkodi, 2007; Manoharan et al., 2008; Niknam et al., 2011). The 

improved version of PSO has been reported to solve the ED problem considering the valve-point 

effects (Polprasert et al., 2013). Further, improved versions of HNN and mathematical methods 

such as Augmented Lagrange HNN (ALHNN), Enhanced ALHNN (EALHNN), Quadratic 

Programming – Augmented Lagrange Hopfield Network (QP-ALHN), Hopfield Lagrange 

Network (HLN), Auction based Algorithm (AA) and Dimensional Steepest Decline (DSD) have 

also been reported to determine cost effective dispatch schedules (Vo & Ongsakul, 2012; Dieu et 

al., 2013; Dieu & Schenger, 2013; Thang, 2013; Binetti et al., 2014; Zhan et al., 2015). The 

Teaching Learning Based Optimization (TLBO) algorithm and Chaotic Global Best ABC 

(CGBABC) algorithm have been applied for the economic solution considering tie line flows and 

MFS (Basu, 2014; Secui, 2015). 

Recently, the population based soft computing techniques like Kinetic Gas Molecule 

Optimization (KGMO) (Basu, 2016), Crisscross Optimization (CCO) (Meng & Yin, 2016), Grey 

Wolf Optimization (GWO) (Pradhan et al., 2016), Backtracking Search Algorithm (BSA) 

(Modiri-Delshad et al., 2016),Predator-Prey Optimization (PPO) (Singh et al., 2016), Synergic 

PPO (SPPO) (Singh et al., 2016),  Lightning Flash Algorithm (LFA) (Kheshti et al., 2017) have 

been reported for cost effective multi-fuel power dispatch schedules. Further, the modified 

versions of meta-heuristic algorithms such as DE-PSO (Parouha & Das, 2016), Colonical 

Competitive DE (CCDE) (Ghasemi et al., 2016), Opposition based Greedy Heuristic Search 

(OGHS) (Singh & Dhillon, 2016), Surrogate Worth Trade-off Method (SWTM) (Singh et al., 

2017), Pseudo-inspired Choatic Bat Algorithm (PCBA) (Shukla & Singh, 2017), Ant Lion 

Optimizer (ALO) (Balachandar et al., 2017; Balachandar 2017), Double Weighted PSO 

(DWPSO) (Kheshti et al., 2018) and Adaptive Predator – Prey Optimization (APPO) (Singh et 

al., 2018) have been reported for the economical real power scheduling considering multiple 

energy sources. An improved version of TLBO and group leader optimization technique have 

also been reported for the ED solutions (Banerjee et al., 2016; Roy et al., 2017).  

The mathematical approaches suffer from the drawback of trapping in local solutions and 

their applications are limited to small-scale linear MFS problems. Withal, the meta-heuristic 

methods also accept a few drawbacks like algorithmic parameter settings, premature phenomena, 

trapping into infeasible solution and are computationally expensive. Hence, it is of great 

significance to improve the existing optimization techniques or exploring new optimization 

techniques to solve MFS problem.  

MULTI FUEL POWER GENERATION DISPATCH (MFPGD) 

Profuse solution methods have been addressed the multi-fuel power dispatch problems aiming 

the minimum cost as the operational objective. Since, the clean air amendment forces the electric 

power utilities to maintain the pollutant level within the predefined limits, a multi-objective 

problem formulation has been desirable that optimizes the total fuel cost and emission in a single 

framework. The economic-environmental compromising operation is less concentrated in the 

area of multi-fuel power generation dispatch. The environmental issues must be integrated into 

the operational model to get it desirable for practical power system conditions.Thang (2013) has 

http://www.sijshmt.com/


Scope International Journal of Science, Humanities, Management and Technology. ISSN : 2455-068X 

Vol.3 Issue 3 (2017) 22 - 36. Submitted 5/07/2017. Published 14/09/2017 

24   ©2017 N.Jayakumar | http://www.sijshmt.com 

 

 

 

reported a model considering environmental issues with MFS. Dieu et al, 2013 has incorporated 

the Prohibited Operating Zone (POZ) as an operational constraint in the MFS environment.  

MATHEMATICAL MODEL OF MFPGD 

The mathematical model for performing cost operation of thermal power plants is given in this 

section. In this formulation, the decision variables are real power outputs of online generators. 

 

Minimization of Total Fuel Cost 

The total fuel cost of thermal power plant (FC) is the sum of fuel costs of online generating units 

and is expressed as, 
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N
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The fuel cost of a generating unit ‘i’ considering valve-point loadings and MFS (j) is 

expressed as,  
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Constraints 

The system and operational constraints are as follows: 

Power Balance 

The total generation by all the generators must be equal to the total power demand (Pd) and 

transmission line loss (PL). 

Ld
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Generation Limits 

The real power generation of each generator is to be controlled inside its upper (Pi
max) and lower 

(Pi
min) operating limits. 

NiPPP iii ....,2,1maxmin =
                                                      

(5) 
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Prohibited Operating Zones 

The restricted operating regions of generating units decomposes the entire feasible operating 

regions into a number of feasible sub-regions and the operating point of a generator should lie in 

any one of the sub-regions as follows: 

 

𝑃𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑖 ≤ 𝑃ⅈ,1

𝑙  

𝑃𝑖,𝑗−1
𝑢 ≤ 𝑃𝑖 ≤ 𝑃𝑖,𝑗

𝑙 ,     𝑗 = 2,3, . . . . , 𝑛𝑖                                            (6)  

𝑃𝑖,𝑛𝑖

𝑢 ≤ 𝑃𝑖 ≤ 𝑃𝑖
𝑚𝑎𝑥                                                   

ANT LION OPTIMIZER 

The ant lions are a class of net winged insects in nature. The lifecycle of ant lions comprises the 

stages as: larvae and adult. A larva is the longest period in their lifecycle and ant lions mostly 

hunt during this period. An ant lion larva digs a cone shaped pit in sand by moving along a 

circular path, then the larvae hides underneath the bottom of the cone and waits for the prey to be 

trapped in the pit. Once the ant lion realizes a prey in the trap, it tries to catch intelligently by 

throw sands towards the edge of the pit to slide the prey into the bottom of the pit. After 

consuming the prey, the ant lions throw leftovers outside the pit and amend the pit for next hunt.  

The ALO mimics the interactions between the ant lions and ants in the trap. The ants are 

allowed to move over the search space and ant lions hunt those using traps to become fitter. 

These activities are mathematically modelled and are detailed in the literature (Mirjalili, 2015). 

The main steps involved in the ALO are random walk of ants, trapping in ant lion’s pits, building 

traps, entrapment of ants in preys, catching in prey and rebuilding of traps. 

Random walks of ants 

To model the interactions between ant lions and ants in the trap, ants are necessitated to move 

over the search space and ant lions are consented to hunt them and become fitter using traps. A 

random walk is chosen for modelling ants’ movement, since during the search for food the ants 

move stochastically in nature. Therefore, to facilitate the random walks inside the search space 

they are normalized using Equation (7). 
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Trapping in ant lion’s pits 

The assumption considered in ALO is that “The random walks of ants are affected by ant lion’s 

traps” (Mirjalili, 2015). The above assumption is mathematically modelled as: 

    mLAm ; qLAq kkjkikkji,k +=+= ,,,                                             
(8) 

Building trap 

In this phase, a roulette wheel operator is used to select the ant lions based on their fitness during 

optimization. This mechanism offers high possibilities to the fitter ant lions for grasping ants. 

Exploration of search space 
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To prevent the trapped ants from escaping the radius of ants’ random walks hyper sphere is 

reduced adaptively. To mathematically model the above behaviour, the following equations, 

which shrink the radius of updating ant’s positions and mimic the sliding process of ant inside 

the pits, are used. 

;k k
k k

q m
q m

R R
= =                                                                      (9) 

Where,R = 10S (k/itermax) and S = 2 if k> 0.1itermax; = 3 if k> 0.5 itermax ; = 4 ifk> 0.75 

itermax; = 5 ifk> 0.9 itermax; = 6 ifk> 0.95 itermax. The accuracy level of exploitation depends 

on the constant S. 

Catching prey and re-building the pit 

The final stage of hunting behaviour is when an ant reaches the bottom of the pit and is caught in 

the ant lion’s jaw. After this stage, the ant lion pulls the ant inside the sand and consumes its 

body. This behaviour is modelled using the following equation: 

) () (   
,,,, kjkikikj

ALfAif fAAL =
                                                 

(10) 

Elitism 

It is assumed that every ant randomly walks around a selected ant lion from the roulette wheel 

and the elite simultaneously as follows: 

, ,
, 2

A k B k
i k

R R
A

+
=

                                                        
(11) 

Implementation for MFPGD 

The algorithmic steps for solving multiple fuel power dispatch are as follows. 

 

Step 1: Read the system data and initialize the algorithmic parameters such as search agents (Ps), 

maximum number of iterations (itermax), number of variables (Nd) and its limits. 

Step 2: The decision variables such as real power outputs of generating units are randomly 

generated within the lower and upper bounds to initialize the first population of ant and 

ant lions using Equations (12) and (13). 

        NdjPs iPPrandPP jjj

j

i ,...2,1;,......2,1)(*
minmaxmin

==−+= (12) 

        Nd jPsiPPrandPP jjj

j

i
AL ,...2,1;,......2,1)(*

minmaxmin
==−+=         (13) 

 The population matrix of ants and ant lions are formed as matrices as in Equations (14) 

and (15) respectively.   
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Step 3: Compute the objective function (EC) using Equation (1). 

Step 4: The ant lion having the best fitness is assumed as elite. 

Step 5: Iteration = Iteration +1.  

Step 6: Apply Roulette wheel selection to select an ant lion for each ant and perform the 

following steps for each ant.  

Step 7: Update the minimum and maximum bounds of all variables using Equation (8).  

Step 8: Create a random walk and normalize it using Equation (7).  

Step 9: Update the positions of ants using Equation (10). 

Step 10: Compute the objective value after update the position of ants. 

Step 11:Replace an ant lion with its corresponding ant if becomes fitter. 

Step 12:Update elite if an ant lion becomes fitter than elite using Equation (11). 

Step 13:Check for maximum iterations reached. Otherwise, go to Step 5. 

Step 14:Print the best feasible solution. 

TEST CASE STUDIES AND DISCUSSIONS 

The optimization procedure is coded in MATLAB 7 and is executed in the personal computer 

with the hardware configuration of Intel Core i3 2.4 GHz processor and 4 GB RAM.  

The standard ten-unit system is used for demonstration. Lin & Viviani, 1984 have proposed 

first this test system that has 3 subsystems and 10 generating units and the system particulars are 

available in the literature (Lin & Viviani, 1984; Chiang, 2005). The generating units are fueled 

with two or three fuels and the piecewise quadratic cost functions represents different fuel types. 

The total system demand is gradually varied in steps of 100 MW from 2400 MW to 2700 MW 

neglecting transmission loss. 

Cost Effective (CE) Schedules  

The intended algorithm is applied for the following scenarios: 
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• Scenario 1: CE operation considering PQCF 

• Scenario 2: CE operation considering PQCF and valve-point loadings and 

• Scenario 3: CE operation considering POZ.  

Scenario 1: 

The ALO is implemented on the standard 10-unit system neglecting valve-point loadings. The 

intended algorithm is executed and the obtained best feasible solution including fuel type, the 

best dispatches of generators and total costs for different load demands are presented in Table 1. 

The ALO has converged to the total fuel costs of $481.7223, $526. 2386, $574.3808 and 

$623.8085 for load demands of 2400 MW, 2500 MW, 2600 MW and 2700 MW respectively. In 

order to validate the obtained numerical results, the total fuel costs are compared with the earlier 

reports and the comparison is presented in Table 2. It is worthy to note that the ALO provides an 

improved CE dispatch schedule for all load demands. As erroneous test data is followed in the 

reports using ABC (Hemamalini & Simon, 2010) and OGHS (Singh & Dhillon, 2016), they 

cannot be taken for direct comparison. 

Table 1. Best CE dispatches neglecting for 10-unit system by ALO  

Unit 

No. 

Pd = 2400 MW Pd = 2500 MW Pd = 2600 MW Pd = 2700 MW 

FS Pi (MW) FS Pi (MW) FS 
Pi 

(MW) 
FS Pi (MW) 

P1 1 189.7403 2 206.5191 2 216.54 2 218.2511 

P2 1 202.3426 1 206.4573 1 210.91 1 211.6626 

P3 1 253.895 1 265.7392 1 278.5 1 280.7217 

P4 3 233.0455 3 235.9532 3 239.1 3 239.6315 

P5 1 241.8293 1 258.017 1 275.5 1 278.4963 

P6 3 233.0457 3 235.953 3 239.1 3 239.6315 

P7 1 253.275 1 268.8636 1 285.7 1 288.5845 

P8 3 233.0456 3 235.9532 3 239.1 3 239.6315 

P9 1 320.383 1 331.4878 1 343.55 3 428.5212 

P10 1 239.3973 1 255.0563 1 272 1 274.8669 

FC 

($/h) 
481.7223 526.2386 574.3808 623.8085 

 

Scenario 2: 

Further, the valve-point effects along with the quadratic fuel cost functions are considered. The 

obtained best feasible dispatches for different load demands using ALO are presented in Table 3. 

For the sake of comparison, the total fuel cost for load demand of 2700 MW is compared against 

the published reports and is presented in Table 4. The reports by using ABC (Hemamalini & 

Simon, 2010), BBO (Bhattacharya & Chattopadhyay, 2011), NAPSO (Niknam et al., 2011), 

DPD (Parouha & Das, 2016), KGMO (Basu, 2016), CSO (Meng et al., 2016), OGHS (Singh & 

Dhillon, 2016) and GWO (Pradhan et al., 2016) cannot be taken for direct comparison due to 

erroneous test data has been adopted. It is also seen from Table 4 that the ALO affords the exact 

dispatch schedule that leads to a nominal savings in the fuel cost. 
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Table 2. Fuel cost comparison for Scenario 1 

Methods Pd = 2400 

MW 

Pd = 2500 MW Pd = 2600 MW Pd = 2700 

MW 

HM  488.50 526.70 574.03 625.18 

HNN 487.87 526.13 574.26 626.12 

AHNN  481.72 526.23 574.37 626.24 

GA 481.723 526.239 574.396 623.809 

Hybrid RCGA  481.722 526.238 574.380 623.809 

Improved Fast 

EP 

NR 526.246 NR NR 

Fast EP NR 526.262 NR NR 

Classical EP NR 526.246 NR NR 

Modified PSO 481.723 526.239 574.381 623.809 

IGA-MU NR NR NR 623.8093 

AIS 481.723 526.240 574.381 623.809 

DE 481.723 526.239 574.381 623.809 

ABC 470.9506* 516.2793* 588.5632* 607.7481* 

EALHNN 481.723 526.239 574.381 623.809 

ALHNN 481.723 526.239 574.381 623.809 

HLN 481.7226 526.2388 574.7413 623.8092 

EP NR NR NR 626.26 

OGHS NR NR NR 623.8082* 

QP-ALHN 481.723 526.239 574.381 623.809 

SPPO NR NR NR 623.809 

APPO NR NR NR 623.809 

ALO 481.7223 526.2386 574.3829 623.8085 

*-Not feasible NR- Not Reported 

Scenario 3: 

The POZ has been considered as an additional operational constraint in the optimization frame 

that increases complexity of the dispatch problem under study. The generating units 3, 5,7 and 10 

having restricted operations and prohibited operating regions are detailed in the literature (Dieu 

& Schenger, 2013). The ALO is implemented and the best economic dispatch schedules for 

various load demands are detailed in Table 5. The attained numerical results are compared with 

the recent reports such as QP-ALHN (Dieu & Schenger, 2013), PSO (Dieu & Schenger, 2013), 

DE (Dieu & Schenger, 2013), PPO (Singh et al., 2018), SPPO (Singh et al., 2018), APPO (Singh 

et al., 2018) and the comparison is also presented in Table 6. It is also observed that the intended 

algorithm attains the competitive results. 

Table 3. Best CE dispatches considering valve-point loadings for 10-unit system by ALO  

Unit 

No. 

Pd = 2400 MW Pd = 2500 MW Pd = 2600 MW Pd = 2700 MW 

FS Pi (MW) FS Pi (MW) FS Pi (MW) FS Pi (MW) 

P1 1 189.283 2 206.283 2 218 2 218.593 
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P2 1 200.21 1 206 1 210 1 211.216 

P3 1 254.4623 1 266.2502 1 278.1012 1 280.656 

P4 3 234.0337 3 235.6046 3 237 3 239.3707 

P5 1 241.3677 1 258.3708 1 275 1 279.934 

P6 3 233.0557 3 235.3683 3 239.912 3 239.3707 

P7 1 253.6068 1 268.6968 1 286 1 287.7275 

P8 3 233.4948 3 235.9671 3 239 3 239.5051 

P9 1 320.6885 1 331.6617 1 343 3 427.7583 

P10 1 239.7971 1 255.7971 1 274 1 275.865 

FC 

($/h) 
482.4127 526.8142 575.0544 623.8278 

 

Table 4. Fuel cost comparison for Scenario 2 

Methods Pd = 2400 

MW 

Pd = 2500 MW Pd = 2600 MW Pd = 2700 

MW 

IGA-MU NR NR NR 624.5178 

NPSO  NR NR NR 624.1624 

NPSO-LRS NR NR NR 624.1273 

PSO-LRS NR NR NR 624.2297 

RGA 482.5114 527.0189 575.1610 624.5081 

DE 482.5275 527.0360 575.1753 624.5146 

PSO 482.5088 527.0185 575.1606 624.5074 

RCGA NR NR NR 623.8281 

ABC NR NR NR 609.2250* 

BBO NR NR NR 605.6387* 

NAPSO NR NR NR 623.6217* 

AA NR NR NR 623.9524 

DSD NR NR NR 623.8325 

DE-PSO-DE NR NR NR 623.8265* 

KGMO NR NR NR 608.1096* 

CCO NR NR NR 623.8237* 

OGHS NR NR NR 623.8240* 

GWO NR NR NR 605.6818* 

BSA NR NR NR 623.9016 

CCDE NR NR NR 623.8288 

SPPO NR NR NR 623.8279 

APPO NR NR NR 623.827 

ALO 482.4127 526.8142 575.0544 623.8278 

*-Not feasible NR- Not Reported 

 

 

Table 5. Best CE dispatches considering POZ for 10-unit system by ALO  
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Unit 

No. 

Pd = 2400 MW Pd = 2500 MW Pd = 2600 MW Pd = 2700 MW 

FS Pi (MW) FS Pi (MW) FS Pi (MW) FS Pi (MW) 

P1 1 189.5489 2 206.4992 2 219.2200 2 221.0370 

P2 1 202.2591 1 206.4769 1 212.0940 1 212.8995 

P3 1 253.5949 1 265.6989 1 281.9526 1 284.2837 

P4 3 232.9593 3 235.9534 3 239.8460 3 240.5154 

P5 1 241.4902 1 258.1081 1 260.0000 1 260.000 

P6 3 232.9991 3 235.9529 3 239.9558 3 240.4955 

P7 1 255.0000 1 268.8637 1 290.2970 1 293.2792 

P8 3 232.9796 3 235.9329 3 239.9362 3 240.4953 

P9 1 320.0990 1 331.5075 1 346.6984 3 436.9954 

P10 1 239.0699 1 255.0065 1 270.000 1 269.999 

FC 

($/h) 
481.7102 526.1924 574.6999 624.310 

 

Table 6. Fuel cost comparison for Scenario 3 

Methods 
Load Demand (MW) 

2400 2500 2600 2700 

DE 482.0683 526.4616 575.1903 624.6675 

PSO 482.0510 526.4546 574.9327 624.4452 

QP-ALHN 481.7266 526.2388 574.7291 624.3212 

PPO --- --- --- 624.403 

SPPO --- --- --- 624.321 

APPO --- --- --- 624.321 

ALO 481.7102 526.1924 574.6999 624.310 

PERFORMANCE EVALUATION AND DISCUSSIONS  

Convergence and Robustness Tests 

The convergence behaviors of the ALO for all the test systems are illustrated in Figure 3. The 

ALO method can reach to the optimum solution more quickly than the other methods reported in 

literature. The ALO is thus demonstrated to have a better convergence property. Over 200 

iterations with several initial random solutions, the ALO has confirmed it as a trustworthy 

solution procedure by generating the global best solution. 

Like other evolutionary algorithms, ALO uses the stochastic techniques, thus randomness is 

an intrinsic feature of these techniques. Several runs with different initial ant lions have been 

conducted to test the performance and consistency of ALO. The spread of best fuel costs for 50 

runs are calculated and graphically displayed in Figures 4 and 5 to illustrate the robustness of the 

ALO. 
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Figure 3. Convergence characteristics of ALO (a) neglecting valve-point and (b) considering 

valve-point 

 

 

Figure 4. Robustness characteristics of ALO for scenario 2 

 

 

 

Success Rate 

The success rate is defined as the ratio of total number of experiments performed to the number 

of successes that converge to the best solution that is expressed in terms of percentage. The 

success rate of the intended algorithm for all case studies is above 80% that confirms the 

algorithm has satisfactory success rate. 

CONCLUSIONS 

The thermal power utilities are facing challenges in cost effective and minimum pollutant 
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emission operations. As these two operational objectives are conflicting in nature, handling of 

these objectives has become crucial. The utilities require a realistic operational model that 

comprises of cost effective and environmental concern operational objectives and operational 

constraints such as generation limits, valve -point loadings, prohibited operation regions and tie 

line power limits. This chapter outlines the mathematical formulation as follows: economic 

operation with various operational constraints, combined economic and emission operation and 

economic operation considering tie-line flow limits.  

Among the solution procedures, meta-heuristic algorithms are highly preferable as they are 

efficient in exploring the search space; handling multiple objectives simultaneously; easy 

constraint handling mechanisms; and can be implemented for system of any size. ALO is a 

modern bio-inspired algorithm and is implemented on standard 10-unit system for various kinds 

of operations. The ALO solves in an exact way, for the different ranges of power demand, the 

underlying combinatorial problem of determining the fuel that must be used by each power 

station. The effectiveness of the proposed approach is verified by numerical simulation of 

different test systems ranging from 10 to 100 units. The results have shown very satisfactory 

performance when compared to the other algorithms reported in the literature.  

The thermal power plants experiencing enormous competitive pressure due to the stringent 

implementation of energy-saving scheduling approaches. Large-scale thermal power units must 

adopt effective strategies to reduce energy consumption, reduce emissions and improve the 

utilization hours in order to create more benefits and survive and develop in the fierce 

competition. The ALO based ED operation optimizes the units’ operation levels and reduce 

emissions in an effective way to reduce power generation cost and enhance competitiveness. 

Future work will extend the problem formulation to address the integration of renewable energy 

sources and energy storage devices that increases the further complexity in the solution 

procedure.   

In a nut-shell, this chapter details the mathematical formulation of multi-fuel power dispatch 

problems in multi-objective framework and application of ALO for solving various kinds of 

MFPGD problems. 
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