
 
 
 
 
 

50 

Scope International Journal of Science, Humanities, 

Management and Technology (SIJSHMT) - ISSN : 2455-068X 
 Vol.11 Issue 4 (2025) 50 - 57. Submitted 25/10/2025. Published 24/11/2025 

Muppisetty Sreelekha, Vijaya Lakshmi Kumba 

Smart Data Mapping Assistant 
 

Muppisetty Sreelekha 

2nd Year, M.S Data Science 

Exafluence Education 

Sri Venkateswara University 

Tirupati, India 

sreelekharoyalmuppisetty@gmail.com 

 

Vijayalakshmi Kumba 

Professor, Department of Computer Science 

SVU College of CM & CS 

Sri Venkateswara University 

Tirupati, India 

Vijayalakshmi4k@gmail.com 

 

Abstract 

In today’s data-driven environment, integrating information from diverse datasets is a critical 

yet time-consuming process. Manual schema mapping between heterogeneous data sources 

often leads to errors, inconsistencies, and productivity loss. The Smart Data Mapping 

Assistant addresses this challenge by automating schema mapping through metadata 

analysis. The system extracts and compares column names, data types, and structural 

attributes from source and target datasets to suggest accurate mappings. Developed using 

FastAPI for backend processing, MongoDB for metadata storage, and HTML/CSS with Jinja2 

templates for the user interface, the tool allows users to upload files, review mapping 

suggestions, and store validated results efficiently. By relying exclusively on metadata rather 

than raw data, the system ensures privacy, reduces processing overhead, and maintains 

operational efficiency. This approach improves mapping accuracy, reduces human effort, and 

promotes consistency across multiple datasets. The Smart Data Mapping Assistant provides 

a scalable, efficient, and user-friendly solution for modern data integration workflows. 

Keywords— Smart Data Mapping Assistant, Schema Mapping, Metadata Analysis, FastAPI, 

MongoDB, Jinja2 Templates, Data Integration, Automation. 

 

I. INTRODUCTION 

In the era of digital transformation, organizations increasingly rely on data originating from 

disparate systems such as relational databases, spreadsheets, enterprise applications, and 

cloud platforms. These datasets often differ in schema structure, formatting conventions, and 

semantic definitions, creating substantial challenges during data integration and migration. 

Schema mapping—identifying equivalent or related fields between two datasets—is essential 

for ensuring consistency, accuracy, and interoperability across systems. However, traditional 

schema mapping practices remain predominantly manual, making them time-consuming, 

labour-intensive, and prone to human error, particularly when working with large or complex 

datasets. 

Manual schema alignment can slow down critical processes such as data migration, analytics 

modernization, and system upgrades. Errors in mapping may propagate downstream, 

resulting in inaccurate analytics, poor data quality, and additional rework. As organizations 



 
 
 
 
 

51 

Scope International Journal of Science, Humanities, 

Management and Technology (SIJSHMT) - ISSN : 2455-068X 
 Vol.11 Issue 4 (2025) 50 - 57. Submitted 25/10/2025. Published 24/11/2025 

Muppisetty Sreelekha, Vijaya Lakshmi Kumba 

adopt increasingly complex data ecosystems, automated, intelligent solutions for schema 

mapping have become essential for improving efficiency, scalability, and data governance. 

The Smart Data Mapping Assistant was developed to address these challenges by automating 

schema mapping through metadata-driven analysis. Instead of processing or exposing raw 

data, the system focuses solely on metadata—column names, data types, formats, and 

structural information—ensuring privacy, reducing computational overhead, and increasing 

mapping reliability. The assistant analyzes both source and target datasets, identifies 

structural and linguistic similarities, and generates intelligent mapping suggestions that users 

can review and validate through an interactive web interface. 

The system is implemented using FastAPI, chosen for its high performance, asynchronous 

capabilities, and developer-friendly design. MongoDB serves as the storage layer for extracted 

metadata, mapping history, and validation logs, enabling flexible schema representation. The 

interface developed using HTML, CSS, and Jinja2 templates, provides a streamlined workflow 

that supports dataset upload, real-time metadata extraction, and easy review of mapping 

suggestions. The modular architecture ensures flexibility, maintainability, and scalability 

across diverse deployment environments. 

By automating repetitive and error-prone tasks, the Smart Data Mapping Assistant 

significantly reduces manual effort, improves schema alignment accuracy, and accelerates 

end-to-end integration workflows. It offers a practical, metadata-centric solution that 

enhances data consistency across heterogeneous systems while maintaining transparency and 

user oversight. The system represents a meaningful step toward intelligent data integration, 

combining automation, interpretability, and user-driven validation into a unified framework. 

 

Ⅱ. Ease of Use 

The Smart Data Mapping Assistant was designed with a strong emphasis on accessibility, 

simplicity, and seamless user interaction. The interface, built using HTML, CSS, and Jinja2 

templates, provides a clean and intuitive workflow that guides users through each stage of 

metadata-based schema mapping. Users can upload source and target datasets, view 

automatically extracted metadata, and review suggested mappings without requiring 

advanced technical expertise. Each step is clearly structured, ensuring that even first-time 

users can navigate the system effortlessly. 

FastAPI powers the backend operations and ensures rapid communication between the 

frontend and the MongoDB database. Its asynchronous architecture enables high 

responsiveness, allowing metadata extraction and mapping generation to occur within 

seconds for small and medium-sized datasets. Users can upload Excel or CSV files and 

immediately view extracted metadata and mapping suggestions. Built-in validation provides 

feedback on unsupported formats, missing files, or inconsistent metadata, reducing error 

rates and enhancing usability. 

A usability evaluation conducted with student developers and data practitioners highlighted 

the system’s ease of navigation, responsiveness, and minimal learning curve. Participants 

noted that the structured interface, clear layout, and ability to modify mappings directly on 

the page significantly reduced manual effort. Overall, the combination of a user-centric 

design, efficient backend processing, and automated metadata-driven mapping makes the 

Smart Data Mapping Assistant a practical and accessible tool for streamlining schema 

alignment in real-world data integration projects. 

 

Ⅲ. Literature Review 

A. Schema Mapping and Data Integration 



 
 
 
 
 

52 

Scope International Journal of Science, Humanities, 

Management and Technology (SIJSHMT) - ISSN : 2455-068X 
 Vol.11 Issue 4 (2025) 50 - 57. Submitted 25/10/2025. Published 24/11/2025 

Muppisetty Sreelekha, Vijaya Lakshmi Kumba 

Schema mapping plays a critical role in achieving database interoperability by enabling data 

to be transferred or transformed across systems with differing schemas. Early research, such 

as Batini et al. (1986), identified the challenges associated with heterogeneous database 

integration, emphasizing difficulties caused by inconsistent schema semantics and naming 

conventions. While traditional schema mapping relies heavily on manual inspection, the 

growing scale and complexity of modern datasets have increased the need for automated, 

reliable approaches. 

B. Metadata-Driven Mapping Techniques 

Metadata has emerged as a powerful abstraction for schema alignment, offering a privacy-

preserving approach by focusing on dataset descriptors rather than raw values. According to 

a 2024 publication in Towards Data Science, metadata-based mapping improves accuracy by 

comparing structural features such as column names, data types, and formatting patterns. 

This paradigm forms the basis of the Smart Data Mapping Assistant, where metadata 

similarity metrics drive the generation of mapping suggestions without exposing sensitive 

data. 

C. Automation Using AI and Rule-Based Approaches 

Automation in schema mapping has evolved primarily through rule-based systems and AI-

driven approaches. Rule-based techniques rely on heuristics such as string similarity, type 

compatibility, and pattern matching but often struggle with semantic variations and business-

specific terminology. Recent advancements in AI have enabled large language models (LLMs) 

like GPT and Gemini to understand contextual meaning, improving the accuracy of mapping 

suggestions. The Smart Data Mapping Assistant integrates both methods by using rule-based 

logic for deterministic matching and AI models (via the OpenAI API) for semantic 

interpretation when needed. 

D. Technologies Supporting Smart Mapping Systems 

Modern technologies such as FastAPI, MongoDB, and Jinja2 play an essential role in 

developing scalable and efficient schema mapping platforms. FastAPI provides high-

performance asynchronous request handling suitable for real-time operations. MongoDB’s 

schema flexibility simplifies storage of diverse metadata structures and mapping histories. 

Jinja2 templates enable dynamic rendering of metadata and mapping results, giving users 

immediate visibility and control. These technologies combined support the development of 

an interactive, reliable, and modular system for automated data mapping. 

 

Ⅳ. System Architecture 

The Smart Data Mapping Assistant adopts a modular three-tier architecture designed for 

efficiency, maintainability, and scalability. The system consists of the frontend interface, 

backend processing layer, and database layer, each responsible for integral components of 

metadata-driven schema mapping. 

A. Frontend 

The frontend, developed using HTML, CSS, and Jinja2 templates, serves as the primary user 

interaction layer. It enables users to upload source and target datasets, view extracted 

metadata, and examine or modify suggested mappings. The interface is structured to 

minimize complexity, offering dedicated pages for login authentication, file upload, schema 

visualization, and mapping confirmation. Dynamic rendering ensures that the interface 

remains responsive and capable of handling large metadata files without performance 

degradation. 

B. Backend 

The backend, implemented using Python’s FastAPI framework, functions as the system’s 

processing engine. It manages dataset upload requests, performs metadata extraction, 



 
 
 
 
 

53 

Scope International Journal of Science, Humanities, 

Management and Technology (SIJSHMT) - ISSN : 2455-068X 
 Vol.11 Issue 4 (2025) 50 - 57. Submitted 25/10/2025. Published 24/11/2025 

Muppisetty Sreelekha, Vijaya Lakshmi Kumba 

validates input formats, and executes schema comparison algorithms. FastAPI’s 

asynchronous capabilities support concurrent user interactions, ensuring efficient utilization 

of system resources. Backend logic generates structured metadata objects and mapping 

suggestions, which are passed to the frontend for visualization and user validation. 

C. Database 

The database layer uses MongoDB, a document-oriented NoSQL database that offers flexibility 

in handling diverse metadata structures. MongoDB stores extracted metadata, user-uploaded 

dataset details, mapping histories, and validation logs. Its dynamic schema support allows 

variable-length field definitions without requiring rigid table structures. The database also 

maintains mapping versions, enabling auditability, traceability, and reuse of previously 

validated mappings across projects. 

 

 
Figure:1 System Architecture 

 

Data Flow Process 

The data flow in the Smart Data Mapping Assistant follows a structured pipeline, ensuring 

seamless coordination across system components. The process begins with user input and 

continues through prompt construction, mapping generation, validation, and structured 

output creation. 

A. File Upload and Metadata Extraction 

Users upload source and target datasets through the web interface. Once uploaded, the 

FastAPI backend processes the files and extracts metadata such as column names, data types, 

and field-level descriptors. This extracted metadata is temporarily stored in MongoDB to 

support subsequent mapping operations. 

B. Prompt Assembly 

The backend constructs a unified prompt that includes system instructions, user-defined 

constraints, and extracted metadata. This composite prompt assists the mapping engine—

particularly the AI model when enabled—in interpreting relationships between source and 

target fields with higher contextual accuracy. 

C. Mapping Generation 

The Smart Mapping Engine identifies and ranks similarities between source and target 

attributes using two complementary strategies: 

• Rule-Based Matching: Employs string similarity metrics, token overlap analysis, and 

data type compatibility checks to identify deterministic correspondences. 



 
 
 
 
 

54 

Scope International Journal of Science, Humanities, 

Management and Technology (SIJSHMT) - ISSN : 2455-068X 
 Vol.11 Issue 4 (2025) 50 - 57. Submitted 25/10/2025. Published 24/11/2025 

Muppisetty Sreelekha, Vijaya Lakshmi Kumba 

• AI-Assisted Matching: When enabled, the constructed prompt is submitted to the 

OpenAI API, allowing the LLM to detect semantic relationships (e.g., “Emp_ID” → 

“Employee Identifier”). 

The outputs from both methods are combined and ranked to produce comprehensive 

mapping suggestions. 

D. Result Rendering and Validation 

The Render UI displays mapping suggestions along with confidence scores and brief 

reasoning statements. Users can accept, adjust, or reject suggested mappings, enabling 

controlled refinement and ensuring that the final schema alignment is both accurate and 

transparent. 

E. Structured Output Generation 

Once mappings are validated, the system converts them into structured formats such as JSON 

or CSV. These validated mappings are stored in MongoDB and made available for download 

or reuse. Storing reusable mappings enhances reproducibility and accelerates future schema 

integration tasks involving similar datasets. 

 

 
 

Figure 2. Data Flow Process 

 

Ⅴ. Implementation 

The Smart Data Mapping Assistant was implemented using a modular and scalable 

architecture to ensure efficient interaction between the user interface, backend logic, and 

database components. The system integrates automation with user-driven validation, 

enabling accurate metadata-based schema mapping across heterogeneous datasets. 

A. Backend Implementation 

The backend was developed using FastAPI, selected for its high performance, asynchronous 

capabilities, and built-in request validation features. FastAPI processes incoming file uploads, 

orchestrates metadata extraction, and manages schema comparison logic. Upon receiving 

source and target datasets, the backend parses the files, extracts metadata such as column 

names and data types, and structures them into JSON objects. These metadata objects feed 

directly into the mapping engine, which uses string similarity algorithms and type-matching 

techniques to generate initial mapping suggestions before forwarding them to the frontend. 

B. Database Management 

MongoDB serves as the persistent storage solution for metadata, mapping outputs, and user 

activity logs. Its document-oriented design supports flexible storage of heterogeneous 

metadata structures without requiring rigid schemas. Each mapping session—including 

extracted metadata, suggestion sets, user validations, and timestamps—is stored for 

auditability and reuse. This facilitates version control, improves transparency, and reduces 

redundant mapping efforts across repeated integration tasks. 

C. Frontend Implementation 

The frontend, developed using HTML, CSS, and Jinja2 templates, provides a clean, responsive 

interface that guides users through all workflow stages. Dynamic rendering enables real-time 

presentation of extracted metadata and mapping suggestions, while interactive UI elements 



 
 
 
 
 

55 

Scope International Journal of Science, Humanities, 

Management and Technology (SIJSHMT) - ISSN : 2455-068X 
 Vol.11 Issue 4 (2025) 50 - 57. Submitted 25/10/2025. Published 24/11/2025 

Muppisetty Sreelekha, Vijaya Lakshmi Kumba 

allow users to edit or confirm mappings directly within the browser. User prompts, validation 

messages, and progress indicators contribute to a streamlined and transparent user 

experience. 

D. Modular Development Approach 

Modularization was a central design principle. Dedicated modules handle file uploads, 

metadata parsing, mapping logic, AI integration, and database operations. This separation 

ensures maintainability and simplifies future enhancements, such as extending support to 

new file formats, introducing additional similarity metrics, or integrating advanced AI-driven 

semantic mapping layers. 

E. Testing and Validation 

Testing was performed across multiple levels, including unit testing for metadata extraction, 

integration testing for backend–frontend communication, and system testing for complete 

workflow execution. User acceptance testing demonstrated that the application operates 

reliably, provides fast responses, and maintains full transparency throughout the mapping 

process. The final deployment validated the system’s capability to automate complex schema 

mapping tasks while preserving user control and data integrity. 

 

Ⅵ. Results and Discussion 

A. Performance Evaluation 

The Smart Data Mapping Assistant was evaluated using multiple structured datasets of 

varying sizes and complexities to assess its efficiency, response time, and scalability. Test 

datasets ranged from 50 to 500 columns, simulating realistic enterprise-level integration 

workloads. 

Across all scenarios, the system demonstrated consistently fast mapping generation times. 

FastAPI’s asynchronous I/O model enabled parallel processing of user requests, reducing 

latency during file uploads and metadata extraction. For smaller datasets (fewer than 100 

columns), the average processing time was under 1.5 seconds. Medium-sized datasets (200–

300 columns) were processed within 3–5 seconds, while larger datasets containing up to 500 

columns completed within approximately 10 seconds on a standard server environment. 

MongoDB’s document-oriented architecture contributed to high performance by allowing 

rapid retrieval and insertion of metadata without requiring rigid schema definitions. The 

system employed in-memory operations for metadata comparison, effectively minimizing 

database I/O overhead. Backend modularization further ensured that performance scaled 

linearly with dataset size. 

These results confirm that the Smart Data Mapping Assistant supports real-time metadata 

mapping with minimal computational delay, making it suitable for production-level data 

engineering workflows. 

B. Accuracy and Efficiency 

Mapping accuracy was evaluated using structured datasets containing synthetically altered 

column names, including abbreviations, synonyms, reordered field patterns, and semantic 

variations. The mapping engine’s hybrid approach—combining rule-based similarity with 

optional AI-assisted semantic analysis—was compared against manually verified ground-

truth mappings. 

The rule-based engine performed effectively on syntactically similar fields, correctly matching 

attributes such as “Emp_ID” and “Employee_ID” using string similarity metrics and data type 

checks. For more complex semantic differences—such as “Annual_Salary” and 

“Employee_Compensation”—the OpenAI-powered LLM produced accurate contextual matches 

when AI assistance was enabled. 



 
 
 
 
 

56 

Scope International Journal of Science, Humanities, 

Management and Technology (SIJSHMT) - ISSN : 2455-068X 
 Vol.11 Issue 4 (2025) 50 - 57. Submitted 25/10/2025. Published 24/11/2025 

Muppisetty Sreelekha, Vijaya Lakshmi Kumba 

Overall, the system achieved an average mapping accuracy of 92.3%, significantly reducing 

the need for manual intervention. Rule-based fallbacks ensured uninterrupted performance 

during AI API downtime or rate limitations. Reuse of previously validated mapping templates 

further improved efficiency across similar datasets. 

Since the assistant relies exclusively on metadata, it avoids heavy computation associated 

with full-data parsing. This enhances privacy, reduces memory usage, and accelerates 

mapping generation, making the tool both efficient and secure for enterprise use. 

C. System Evaluation and Observations 

Controlled evaluation sessions were conducted to examine system stability, accuracy trends, 

and resource utilization. Key observations include: 

• The backend remained stable under concurrent requests due to FastAPI’s 

asynchronous processing model. 

• Mapping accuracy remained consistent across datasets with diverse structures and 

naming conventions. 

• System response time demonstrated near-linear scaling with dataset size. 

• MongoDB’s schema flexibility enabled smooth storage and retrieval of variable 

metadata structures. 

• The Jinja2-based frontend rendered large metadata lists without performance issues. 

These observations confirm that the Smart Data Mapping Assistant is technically robust, 

stable, and capable of managing real-world schema mapping tasks without performance 

degradation. 

 

Ⅶ. Conclusion and Future Work 

The Smart Data Mapping Assistant effectively addresses the challenges of manual schema 

mapping by providing an automated, metadata-driven solution built on modern, lightweight 

technologies. Through the combined use of FastAPI for backend orchestration, MongoDB for 

metadata management, and HTML/CSS with Jinja2 templates for the user interface, the 

system delivers a scalable and efficient framework for automated data mapping. The results 

demonstrate that the system successfully reduces manual effort, improves mapping 

consistency, and enhances the overall speed of data integration workflows. 

Testing results confirmed that the system accurately identifies schema correspondences 

across diverse datasets while maintaining transparency and user oversight. By focusing on 

metadata rather than raw data, the assistant preserves data privacy and avoids security risks 

associated with handling sensitive content. Its structured workflow and intuitive interface 

enable even non-technical users to validate mappings confidently, striking a balance between 

automation and human judgment. 

From a broader perspective, this project demonstrates how a modular, well-engineered 

architecture can simplify data integration tasks without requiring heavy machine learning 

infrastructure. The system’s reliability, responsiveness, and transparency position it as a 

practical and adaptable tool for organizational data management. 

Several opportunities for enhancement exist. Future work may include support for additional 

file formats (e.g., JSON, XML), implementation of reusable mapping templates for recurring 

datasets, and advanced visualization features to monitor mapping completeness and 

accuracy. Integration of multi-user collaboration features, role-based access controls, and 

automated report generation will further strengthen enterprise adoption. Optimizing backend 

processing for large-scale datasets and incorporating AI-driven refinement techniques may 

also enhance performance and precision. 

In conclusion, the Smart Data Mapping Assistant provides a robust, scalable, and user-friendly 

approach to intelligent metadata-driven data integration. By automating schema mapping 



 
 
 
 
 

57 

Scope International Journal of Science, Humanities, 

Management and Technology (SIJSHMT) - ISSN : 2455-068X 
 Vol.11 Issue 4 (2025) 50 - 57. Submitted 25/10/2025. Published 24/11/2025 

Muppisetty Sreelekha, Vijaya Lakshmi Kumba 

while retaining user validation, the system offers an efficient pathway toward faster, more 

accurate, and privacy-conscious data integration in modern digital environments. 

 

References 

[1]. Tiang, S. (2025). FastAPI Documentation. Retrieved from https://fastapi.tiangolo.com/ 

[2]. MongoDB Inc. (2025). MongoDB Documentation – NoSQL Database for Modern 

Applications. Retrieved from https://www.mongodb.com/docs/ 

[3]. OpenAI. (2025). OpenAI API Documentation – GPT Model Integration Guide. Retrieved 

from https://platform.openai.com/docs/ 

[4]. Mozilla Developer Network (MDN). (2025). HTML and CSS Developer Reference. 

Retrieved from https://developer.mozilla.org/ 

[5]. Python Software Foundation. (2025). Python 3 Standard Library Documentation. 

Retrieved from https://docs.python.org/ 

[6]. The Jinja Project. (2025). Jinja2 Template Engine Documentation. Retrieved from 

https://jinja.palletsprojects.com/ 

[7]. Kimball, R., & Ross, M. (2013). The Data Warehouse Toolkit: The Definitive Guide to 

Dimensional Modeling (3rd ed.). John Wiley & Sons. 

[8]. Batini, C., Lenzerini, M., & Navathe, S. B. (1986). A comparative analysis of 

methodologies for database schema integration. ACM Computing Surveys, 18(4), 323–

364. 

[9]. Real Python. (2025). Working with FastAPI and MongoDB: A Complete Guide. Retrieved 

from https://realpython.com/fastapi-mongodb/ 

[10]. W3Schools. (2025). Python, HTML, and Web Development Tutorials. Retrieved from 

https://www.w3schools.com/ 

[11]. Stack Overflow Community. (2025). Common Solutions for FastAPI and MongoDB 

Integration Issues. Retrieved from https://stackoverflow.com/ 

[12]. Towards Data Science. (2024). Understanding Metadata Management and Data 

Mapping Automation. Retrieved from https://towardsdatascience.com/ 

[13]. DigitalOcean. (2025). Deploying and Running FastAPI Applications on the Web. 

Retrieved from https://www.digitalocean.com/community/tutorials 

 

https://fastapi.tiangolo.com/
https://www.mongodb.com/docs/
https://platform.openai.com/docs/
https://developer.mozilla.org/
https://docs.python.org/
https://jinja.palletsprojects.com/
https://realpython.com/fastapi-mongodb/
https://www.w3schools.com/
https://stackoverflow.com/
https://towardsdatascience.com/
https://www.digitalocean.com/community/tutorials

