Scope International Journal of Science, Humanities,

Management and Technology (SIJSHMT) - ISSN : 2455-068X
Vol.11 Issue 4 (2025) 50 - 57. Submitted 25/10/2025. Published 24/11/2025

Smart Data Mapping Assistant

Muppisetty Sreelekha
2nd Year, M.S Data Science
Exafluence Education
Sri Venkateswara University
Tirupati, India
sreelekharoyalmuppisetty@gmail.com

Vijayalakshmi Kumba
Professor, Department of Computer Science
SVU College of CM & CS
Sri Venkateswara University
Tirupati, India
Vijayalakshmi4k@gmail.com

Abstract

In today’s data-driven environment, integrating information from diverse datasets is a critical
yet time-consuming process. Manual schema mapping between heterogeneous data sources
often leads to errors, inconsistencies, and productivity loss. The Smart Data Mapping
Assistant addresses this challenge by automating schema mapping through metadata
analysis. The system extracts and compares column names, data types, and structural
attributes from source and target datasets to suggest accurate mappings. Developed using
FastAPI for backend processing, MongoDB for metadata storage, and HTML/CSS with Jinja2
templates for the user interface, the tool allows users to upload files, review mapping
suggestions, and store validated results efficiently. By relying exclusively on metadata rather
than raw data, the system ensures privacy, reduces processing overhead, and maintains
operational efficiency. This approach improves mapping accuracy, reduces human effort, and
promotes consistency across multiple datasets. The Smart Data Mapping Assistant provides
a scalable, efficient, and user-friendly solution for modern data integration workflows.
Keywords— Smart Data Mapping Assistant, Schema Mapping, Metadata Analysis, FastAPI,
MongoDB, Jinja2 Templates, Data Integration, Automation.

I. INTRODUCTION

In the era of digital transformation, organizations increasingly rely on data originating from
disparate systems such as relational databases, spreadsheets, enterprise applications, and
cloud platforms. These datasets often differ in schema structure, formatting conventions, and
semantic definitions, creating substantial challenges during data integration and migration.
Schema mapping—identifying equivalent or related fields between two datasets—is essential
for ensuring consistency, accuracy, and interoperability across systems. However, traditional
schema mapping practices remain predominantly manual, making them time-consuming,
labour-intensive, and prone to human error, particularly when working with large or complex
datasets.

Manual schema alignment can slow down critical processes such as data migration, analytics
modernization, and system upgrades. Errors in mapping may propagate downstream,
resulting in inaccurate analytics, poor data quality, and additional rework. As organizations

Muppisetty Sreelekha, Vijaya Lakshmi Kumba 50

Scope International Journal of Science, Humanities,

Management and Technology (SIJSHMT) - ISSN : 2455-068X
Vol.11 Issue 4 (2025) 50 - 57. Submitted 25/10/2025. Published 24/11/2025

adopt increasingly complex data ecosystems, automated, intelligent solutions for schema
mapping have become essential for improving efficiency, scalability, and data governance.
The Smart Data Mapping Assistant was developed to address these challenges by automating
schema mapping through metadata-driven analysis. Instead of processing or exposing raw
data, the system focuses solely on metadata—column names, data types, formats, and
structural information—ensuring privacy, reducing computational overhead, and increasing
mapping reliability. The assistant analyzes both source and target datasets, identifies
structural and linguistic similarities, and generates intelligent mapping suggestions that users
can review and validate through an interactive web interface.

The system is implemented using FastAPI, chosen for its high performance, asynchronous
capabilities, and developer-friendly design. MongoDB serves as the storage layer for extracted
metadata, mapping history, and validation logs, enabling flexible schema representation. The
interface developed using HTML, CSS, and Jinja2 templates, provides a streamlined workflow
that supports dataset upload, real-time metadata extraction, and easy review of mapping
suggestions. The modular architecture ensures flexibility, maintainability, and scalability
across diverse deployment environments.

By automating repetitive and error-prone tasks, the Smart Data Mapping Assistant
significantly reduces manual effort, improves schema alignment accuracy, and accelerates
end-to-end integration workflows. It offers a practical, metadata-centric solution that
enhances data consistency across heterogeneous systems while maintaining transparency and
user oversight. The system represents a meaningful step toward intelligent data integration,
combining automation, interpretability, and user-driven validation into a unified framework.

II. Ease of Use

The Smart Data Mapping Assistant was designed with a strong emphasis on accessibility,
simplicity, and seamless user interaction. The interface, built using HTML, CSS, and Jinja2
templates, provides a clean and intuitive workflow that guides users through each stage of
metadata-based schema mapping. Users can upload source and target datasets, view
automatically extracted metadata, and review suggested mappings without requiring
advanced technical expertise. Each step is clearly structured, ensuring that even first-time
users can navigate the system effortlessly.

FastAPI powers the backend operations and ensures rapid communication between the
frontend and the MongoDB database. Its asynchronous architecture enables high
responsiveness, allowing metadata extraction and mapping generation to occur within
seconds for small and medium-sized datasets. Users can upload Excel or CSV files and
immediately view extracted metadata and mapping suggestions. Built-in validation provides
feedback on unsupported formats, missing files, or inconsistent metadata, reducing error
rates and enhancing usability.

A usability evaluation conducted with student developers and data practitioners highlighted
the system’s ease of navigation, responsiveness, and minimal learning curve. Participants
noted that the structured interface, clear layout, and ability to modify mappings directly on
the page significantly reduced manual effort. Overall, the combination of a user-centric
design, efficient backend processing, and automated metadata-driven mapping makes the
Smart Data Mapping Assistant a practical and accessible tool for streamlining schema
alignment in real-world data integration projects.

Il. Literature Review
A. Schema Mapping and Data Integration

Muppisetty Sreelekha, Vijaya Lakshmi Kumba 51

Scope International Journal of Science, Humanities,

Management and Technology (SIJSHMT) - ISSN : 2455-068X
Vol.11 Issue 4 (2025) 50 - 57. Submitted 25/10/2025. Published 24/11/2025

Schema mapping plays a critical role in achieving database interoperability by enabling data
to be transferred or transformed across systems with differing schemas. Early research, such
as Batini et al. (1986), identified the challenges associated with heterogeneous database
integration, emphasizing difficulties caused by inconsistent schema semantics and naming
conventions. While traditional schema mapping relies heavily on manual inspection, the
growing scale and complexity of modern datasets have increased the need for automated,
reliable approaches.

B. Metadata-Driven Mapping Techniques

Metadata has emerged as a powerful abstraction for schema alignment, offering a privacy-
preserving approach by focusing on dataset descriptors rather than raw values. According to
a 2024 publication in Towards Data Science, metadata-based mapping improves accuracy by
comparing structural features such as column names, data types, and formatting patterns.
This paradigm forms the basis of the Smart Data Mapping Assistant, where metadata
similarity metrics drive the generation of mapping suggestions without exposing sensitive
data.

C. Automation Using Al and Rule-Based Approaches

Automation in schema mapping has evolved primarily through rule-based systems and Al-
driven approaches. Rule-based techniques rely on heuristics such as string similarity, type
compatibility, and pattern matching but often struggle with semantic variations and business-
specific terminology. Recent advancements in Al have enabled large language models (LLMs)
like GPT and Gemini to understand contextual meaning, improving the accuracy of mapping
suggestions. The Smart Data Mapping Assistant integrates both methods by using rule-based
logic for deterministic matching and AI models (via the OpenAl API) for semantic
interpretation when needed.

D. Technologies Supporting Smart Mapping Systems

Modern technologies such as FastAPI, MongoDB, and Jinja2 play an essential role in
developing scalable and efficient schema mapping platforms. FastAPI provides high-
performance asynchronous request handling suitable for real-time operations. MongoDB'’s
schema flexibility simplifies storage of diverse metadata structures and mapping histories.
Jinja2 templates enable dynamic rendering of metadata and mapping results, giving users
immediate visibility and control. These technologies combined support the development of
an interactive, reliable, and modular system for automated data mapping.

IV. System Architecture

The Smart Data Mapping Assistant adopts a modular three-tier architecture designed for
efficiency, maintainability, and scalability. The system consists of the frontend interface,
backend processing layer, and database layer, each responsible for integral components of
metadata-driven schema mapping.

A. Frontend

The frontend, developed using HTML, CSS, and Jinja2 templates, serves as the primary user
interaction layer. It enables users to upload source and target datasets, view extracted
metadata, and examine or modify suggested mappings. The interface is structured to
minimize complexity, offering dedicated pages for login authentication, file upload, schema
visualization, and mapping confirmation. Dynamic rendering ensures that the interface
remains responsive and capable of handling large metadata files without performance
degradation.

B. Backend

The backend, implemented using Python’s FastAPI framework, functions as the system’s
processing engine. It manages dataset upload requests, performs metadata extraction,

Muppisetty Sreelekha, Vijaya Lakshmi Kumba 52

Scope International Journal of Science, Humanities,

Management and Technology (SIJSHMT) - ISSN : 2455-068X
Vol.11 Issue 4 (2025) 50 - 57. Submitted 25/10/2025. Published 24/11/2025

validates input formats, and executes schema comparison algorithms. FastAPI's
asynchronous capabilities support concurrent user interactions, ensuring efficient utilization
of system resources. Backend logic generates structured metadata objects and mapping
suggestions, which are passed to the frontend for visualization and user validation.

C. Database

The database layer uses MongoDB, a document-oriented NoSQL database that offers flexibility
in handling diverse metadata structures. MongoDB stores extracted metadata, user-uploaded
dataset details, mapping histories, and validation logs. Its dynamic schema support allows
variable-length field definitions without requiring rigid table structures. The database also
maintains mapping versions, enabling auditability, traceability, and reuse of previously
validated mappings across projects.

Prompt assembler

Source
X g +
Column
descriptions

Smart Mapping
System prompt Engine
+
User prompt Results
+
Target Metad.ata. with
X I descriptions

Column
descriptions

' Reder Ul Structured
output
—

Figure:1 System Architecture

Data Flow Process
The data flow in the Smart Data Mapping Assistant follows a structured pipeline, ensuring
seamless coordination across system components. The process begins with user input and
continues through prompt construction, mapping generation, validation, and structured
output creation.
A. File Upload and Metadata Extraction
Users upload source and target datasets through the web interface. Once uploaded, the
FastAPI backend processes the files and extracts metadata such as column names, data types,
and field-level descriptors. This extracted metadata is temporarily stored in MongoDB to
support subsequent mapping operations.
B. Prompt Assembly
The backend constructs a unified prompt that includes system instructions, user-defined
constraints, and extracted metadata. This composite prompt assists the mapping engine—
particularly the AI model when enabled—in interpreting relationships between source and
target fields with higher contextual accuracy.
C. Mapping Generation
The Smart Mapping Engine identifies and ranks similarities between source and target
attributes using two complementary strategies:

¢ Rule-Based Matching: Employs string similarity metrics, token overlap analysis, and

data type compatibility checks to identify deterministic correspondences.

Muppisetty Sreelekha, Vijaya Lakshmi Kumba 33

Scope International Journal of Science, Humanities,

Management and Technology (SIJSHMT) - ISSN : 2455-068X
Vol.11 Issue 4 (2025) 50 - 57. Submitted 25/10/2025. Published 24/11/2025

¢ Al-Assisted Matching: When enabled, the constructed prompt is submitted to the

OpenAl API, allowing the LLM to detect semantic relationships (e.g., “Emp_ID” —
“Employee Identifier”).

The outputs from both methods are combined and ranked to produce comprehensive

mapping suggestions.

D. Result Rendering and Validation

The Render Ul displays mapping suggestions along with confidence scores and brief

reasoning statements. Users can accept, adjust, or reject suggested mappings, enabling

controlled refinement and ensuring that the final schema alignment is both accurate and

transparent.

E. Structured Output Generation

Once mappings are validated, the system converts them into structured formats such as JSON

or CSV. These validated mappings are stored in MongoDB and made available for download

or reuse. Storing reusable mappings enhances reproducibility and accelerates future schema

integration tasks involving similar datasets.

MongoDB Structured
‘ USER UI —-4[Batabioce]‘{ Render Ul H Output]

Figure 2. Data Flow Process

V. Implementation

The Smart Data Mapping Assistant was implemented using a modular and scalable
architecture to ensure efficient interaction between the user interface, backend logic, and
database components. The system integrates automation with user-driven validation,
enabling accurate metadata-based schema mapping across heterogeneous datasets.

A. Backend Implementation

The backend was developed using FastAPI, selected for its high performance, asynchronous
capabilities, and built-in request validation features. FastAPI processes incoming file uploads,
orchestrates metadata extraction, and manages schema comparison logic. Upon receiving
source and target datasets, the backend parses the files, extracts metadata such as column
names and data types, and structures them into JSON objects. These metadata objects feed
directly into the mapping engine, which uses string similarity algorithms and type-matching
techniques to generate initial mapping suggestions before forwarding them to the frontend.
B. Database Management

MongoDB serves as the persistent storage solution for metadata, mapping outputs, and user
activity logs. Its document-oriented design supports flexible storage of heterogeneous
metadata structures without requiring rigid schemas. Each mapping session—including
extracted metadata, suggestion sets, user validations, and timestamps—is stored for
auditability and reuse. This facilitates version control, improves transparency, and reduces
redundant mapping efforts across repeated integration tasks.

C. Frontend Implementation

The frontend, developed using HTML, CSS, and Jinja2 templates, provides a clean, responsive
interface that guides users through all workflow stages. Dynamic rendering enables real-time
presentation of extracted metadata and mapping suggestions, while interactive Ul elements

Muppisetty Sreelekha, Vijaya Lakshmi Kumba o4

Scope International Journal of Science, Humanities,

Management and Technology (SIJSHMT) - ISSN : 2455-068X
Vol.11 Issue 4 (2025) 50 - 57. Submitted 25/10/2025. Published 24/11/2025

allow users to edit or confirm mappings directly within the browser. User prompts, validation
messages, and progress indicators contribute to a streamlined and transparent user
experience.

D. Modular Development Approach

Modularization was a central design principle. Dedicated modules handle file uploads,
metadata parsing, mapping logic, Al integration, and database operations. This separation
ensures maintainability and simplifies future enhancements, such as extending support to
new file formats, introducing additional similarity metrics, or integrating advanced Al-driven
semantic mapping layers.

E. Testing and Validation

Testing was performed across multiple levels, including unit testing for metadata extraction,
integration testing for backend-frontend communication, and system testing for complete
workflow execution. User acceptance testing demonstrated that the application operates
reliably, provides fast responses, and maintains full transparency throughout the mapping
process. The final deployment validated the system’s capability to automate complex schema
mapping tasks while preserving user control and data integrity.

VI. Results and Discussion

A. Performance Evaluation

The Smart Data Mapping Assistant was evaluated using multiple structured datasets of
varying sizes and complexities to assess its efficiency, response time, and scalability. Test
datasets ranged from 50 to 500 columns, simulating realistic enterprise-level integration
workloads.

Across all scenarios, the system demonstrated consistently fast mapping generation times.
FastAPI's asynchronous I/O model enabled parallel processing of user requests, reducing
latency during file uploads and metadata extraction. For smaller datasets (fewer than 100
columns), the average processing time was under 1.5 seconds. Medium-sized datasets (200-
300 columns) were processed within 3-5 seconds, while larger datasets containing up to 500
columns completed within approximately 10 seconds on a standard server environment.
MongoDB’s document-oriented architecture contributed to high performance by allowing
rapid retrieval and insertion of metadata without requiring rigid schema definitions. The
system employed in-memory operations for metadata comparison, effectively minimizing
database I/0 overhead. Backend modularization further ensured that performance scaled
linearly with dataset size.

These results confirm that the Smart Data Mapping Assistant supports real-time metadata
mapping with minimal computational delay, making it suitable for production-level data
engineering workflows.

B. Accuracy and Efficiency

Mapping accuracy was evaluated using structured datasets containing synthetically altered
column names, including abbreviations, synonyms, reordered field patterns, and semantic
variations. The mapping engine’s hybrid approach—combining rule-based similarity with
optional Al-assisted semantic analysis—was compared against manually verified ground-
truth mappings.

The rule-based engine performed effectively on syntactically similar fields, correctly matching
attributes such as “Emp_ID” and “Employee_ID” using string similarity metrics and data type
checks. For more complex semantic differences—such as “Annual_Salary” and
“Employee_Compensation”—the OpenAl-powered LLM produced accurate contextual matches
when Al assistance was enabled.

Muppisetty Sreelekha, Vijaya Lakshmi Kumba 39

Scope International Journal of Science, Humanities,

Management and Technology (SIJSHMT) - ISSN : 2455-068X
Vol.11 Issue 4 (2025) 50 - 57. Submitted 25/10/2025. Published 24/11/2025

Overall, the system achieved an average mapping accuracy of 92.3%, significantly reducing
the need for manual intervention. Rule-based fallbacks ensured uninterrupted performance
during AI API downtime or rate limitations. Reuse of previously validated mapping templates
further improved efficiency across similar datasets.
Since the assistant relies exclusively on metadata, it avoids heavy computation associated
with full-data parsing. This enhances privacy, reduces memory usage, and accelerates
mapping generation, making the tool both efficient and secure for enterprise use.
C. System Evaluation and Observations
Controlled evaluation sessions were conducted to examine system stability, accuracy trends,
and resource utilization. Key observations include:
e The backend remained stable under concurrent requests due to FastAPI's
asynchronous processing model.
e Mapping accuracy remained consistent across datasets with diverse structures and
naming conventions.
e System response time demonstrated near-linear scaling with dataset size.
e MongoDB’s schema flexibility enabled smooth storage and retrieval of variable
metadata structures.
¢ The Jinja2-based frontend rendered large metadata lists without performance issues.
These observations confirm that the Smart Data Mapping Assistant is technically robust,
stable, and capable of managing real-world schema mapping tasks without performance
degradation.

VI. Conclusion and Future Work

The Smart Data Mapping Assistant effectively addresses the challenges of manual schema
mapping by providing an automated, metadata-driven solution built on modern, lightweight
technologies. Through the combined use of FastAPI for backend orchestration, MongoDB for
metadata management, and HTML/CSS with Jinja2 templates for the user interface, the
system delivers a scalable and efficient framework for automated data mapping. The results
demonstrate that the system successfully reduces manual effort, improves mapping
consistency, and enhances the overall speed of data integration workflows.

Testing results confirmed that the system accurately identifies schema correspondences
across diverse datasets while maintaining transparency and user oversight. By focusing on
metadata rather than raw data, the assistant preserves data privacy and avoids security risks
associated with handling sensitive content. Its structured workflow and intuitive interface
enable even non-technical users to validate mappings confidently, striking a balance between
automation and human judgment.

From a broader perspective, this project demonstrates how a modular, well-engineered
architecture can simplify data integration tasks without requiring heavy machine learning
infrastructure. The system’s reliability, responsiveness, and transparency position it as a
practical and adaptable tool for organizational data management.

Several opportunities for enhancement exist. Future work may include support for additional
file formats (e.g., JSON, XML), implementation of reusable mapping templates for recurring
datasets, and advanced visualization features to monitor mapping completeness and
accuracy. Integration of multi-user collaboration features, role-based access controls, and
automated report generation will further strengthen enterprise adoption. Optimizing backend
processing for large-scale datasets and incorporating Al-driven refinement techniques may
also enhance performance and precision.

In conclusion, the Smart Data Mapping Assistant provides a robust, scalable, and user-friendly
approach to intelligent metadata-driven data integration. By automating schema mapping

Muppisetty Sreelekha, Vijaya Lakshmi Kumba 56

Scope International Journal of Science, Humanities,

Management and Technology (SIJSHMT) - ISSN : 2455-068X
Vol.11 Issue 4 (2025) 50 - 57. Submitted 25/10/2025. Published 24/11/2025

while retaining user validation, the system offers an efficient pathway toward faster, more
accurate, and privacy-conscious data integration in modern digital environments.

References

[1]. Tiang, S. (2025). FastAPI Documentation. Retrieved from https://fastapi.tiangolo.com/

[2]. MongoDB Inc. (2025). MongoDB Documentation - NoSQL Database for Modern
Applications. Retrieved from https://www.mongodb.com/docs/

[3]. OpenAl (2025). OpenAl API Documentation - GPT Model Integration Guide. Retrieved
from https://platform.openai.com/docs/

[4]. Mozilla Developer Network (MDN). (2025). HTML and CSS Developer Reference.
Retrieved from https://developer.mozilla.org/

[5]. Python Software Foundation. (2025). Python 3 Standard Library Documentation.
Retrieved from https://docs.python.org/

[6]. The Jinja Project. (2025). Jinja2 Template Engine Documentation. Retrieved from
https://jinja.palletsprojects.com/

[7]. Kimball, R., & Ross, M. (2013). The Data Warehouse Toolkit: The Definitive Guide to
Dimensional Modeling (3rd ed.). John Wiley & Sons.

[8]. Batini, C., Lenzerini, M., & Navathe, S. B. (1986). A comparative analysis of
methodologies for database schema integration. ACM Computing Surveys, 18(4), 323-
364.

[9]. Real Python. (2025). Working with FastAPI and MongoDB: A Complete Guide. Retrieved
from https://realpython.com/fastapi-mongodb/

[10]. W3Schools. (2025). Python, HTML, and Web Development Tutorials. Retrieved from
https://www.w3schools.com/

[11]. Stack Overflow Community. (2025). Common Solutions for FastAPI and MongoDB
Integration Issues. Retrieved from https://stackoverflow.com/

[12]. Towards Data Science. (2024). Understanding Metadata Management and Data
Mapping Automation. Retrieved from https://towardsdatascience.com/

[13]. DigitalOcean. (2025). Deploying and Running FastAPI Applications on the Web.

Retrieved from https://www.digitalocean.com/community/tutorials

Muppisetty Sreelekha, Vijaya Lakshmi Kumba 57

https://fastapi.tiangolo.com/
https://www.mongodb.com/docs/
https://platform.openai.com/docs/
https://developer.mozilla.org/
https://docs.python.org/
https://jinja.palletsprojects.com/
https://realpython.com/fastapi-mongodb/
https://www.w3schools.com/
https://stackoverflow.com/
https://towardsdatascience.com/
https://www.digitalocean.com/community/tutorials

