Scope International Journal of Science, Humanities,

Management and Technology (SIJSHMT) - ISSN : 2455-068X
Vol.11 Issue 4 (2025) 31 - 38. Submitted 25/10/2025. Published 20/11/2025

Conversational Assistant for ETL Querying and
Debugging

K Mounika
2nd Year, MS in Data Science
Exafluence Education
Sri Venkateswara University
Tirupati, India
mounika062002@gmail.com

Vijaya Lakshmi Kumba
Professor, Dept. of Computer Science
SVU College of CM & CS
Sri Venkateswara University
Tirupati, India
vijayalakshmik4@gmail.com

Abstract—Extract, Transform, Load (ETL) pipelines are the backbone of modern data
integration and analytics workflows. As organizations increasingly depend on data-driven
decision-making, the reliability and interpretability of these ETL processes become
paramount. However, debugging, monitoring, and querying ETL workflows often require
specialized technical expertise, leading to bottlenecks and delayed troubleshooting. This
study introduces a Conversational Assistant for ETL Querying and Debugging, a system
designed to facilitate natural-language-based interaction with data pipelines. The assistant
integrates Natural Language Processing (NLP) models, contextual knowledge, and an
intelligent query generation engine to interpret user commands and execute appropriate ETL
operations or diagnostics. Using transformer-based architectures, the assistant converts plain
English requests into executable scripts and SQL-like queries. The system was evaluated
across multiple ETL scenarios, demonstrating significant improvements in accessibility,
debugging efficiency, and task completion time. This research contributes to advancing
human-data interaction through conversational intelligence and proposes a generalized
framework for secure, transparent, and adaptive ETL management.

Index Terms—ETL, Conversational Al, Natural Language Processing, Query Generation, Data
Pipelines, Debugging, Machine Learning, Data Engineering Automation

I. INTRODUCTION

Data has become one of the most valuable assets of the modern digital economy.
Organizations rely on complex data pipelines to collect, clean, transform, and deliver data
from disparate sources into analytical systems. The Extract, Transform, Load (ETL) process
plays a pivotal role in ensuring data consistency, accuracy, and reliability across enterprise
applications. However, as data volume and heterogeneity increase, maintaining and debugging
ETL pipelines has become a formidable challenge.

Traditional ETL debugging and query generation require data engineers to inspect logs
manually, trace transformation scripts, and understand schema relationships. This process is
time-consuming, error-prone, and inaccessible to non-technical stakeholders. Business
analysts and domain experts, who possess contextual knowledge of data semantics, are often
unable to interact with ETL systems because of their technical complexity.

K Mounika, Vijaya Lakshmi Kumba 31


mailto:mounika062002@gmail.com
mailto:vijayalakshmik4@gmail.com

Scope International Journal of Science, Humanities,

Management and Technology (SIJSHMT) - ISSN : 2455-068X
Vol.11 Issue 4 (2025) 31 - 38. Submitted 25/10/2025. Published 20/11/2025

Recent advances in Conversational Artificial Intelligence (AI) and Natural Language Processing
(NLP) have enabled more intuitive human-computer interactions. By leveraging these
technologies, it is possible to design intelligent agents that allow users to communicate with
complex data systems using everyday language. A conversational assistant that supports ETL
querying and debugging could significantly lower the barrier for data interaction, enhance
productivity, and foster collaboration across technical and non-technical teams.

This paper introduces a Conversational Assistant framework that allows users to perform ETL
operations, generate queries, and debug data pipelines through natural language dialogue.
The system leverages modern transformer-based language models such as BERT, GPT, and T5
to interpret user intent, extract relevant entities, and dynamically construct SQL or ETL
queries. By combining semantic understanding with pipeline metadata, the assistant provides
accurate and explainable responses.

The main contributions of this research are as follows:

¢ A modular conversational framework for ETL debugging and query generation
that integrates NLP, knowledge representation, and automation components.
¢ A domain-adaptive natural language understanding (NLU) model fine-tuned for
ETL-related intents and schema recognition.
e An execution engine capable of translating natural language queries into
validated SQL or ETL scripts.
e A comprehensive evaluation of performance, usability, and accuracy through
controlled experiments and user studies.
The remainder of this paper is organized as follows: Section II reviews related research and
technologies. Section III describes the system architecture and design methodology. Section
IV presents implementation details. Section V discusses experimental results and evaluation.
Section VI outlines key challenges and limitations, and Section VII concludes the study with
directions for future work.

II. RELATED WORK AND BACKGROUND

The intersection of Conversational Artificial Intelligence (Al) and data engineering has drawn
growing attention in recent years. Research in this domain spans natural language interfaces
to databases (NLIDB), automated ETL systems, and intelligent debugging assistants. This
section provides a comprehensive review of existing literature and technologies relevant to
conversational ETL management.

A. Natural Language Interfaces for Databases

Natural Language Interfaces to Databases (NLIDBs) have been a long-standing research
problem, dating back to early systems such as LUNAR and CHAT-80 in the 1970s. These
systems aimed to translate human language queries into structured database commands.
However, they suffered from limited linguistic understanding and rigid grammar structures.
With the emergence of transformer-based models such as BERT and GPT, the field has
experienced significant advancements. These models enable contextual embeddings that
capture semantic relationships between entities in natural language queries and database
schema elements. Works such as [2] and [3] have demonstrated how large language models
(LLMs) can improve the accuracy of SQL generation by understanding user intent and context.
Recent systems like Google’s BigQuery ML Assistant and OpenAl’s Code Interpreter further
illustrate the practical integration of NLP-driven querying within enterprise environments.
However, these systems primarily focus on data retrieval and lack deeper diagnostic or
debugging functionalities, which are crucial for ETL pipelines.

K Mounika, Vijaya Lakshmi Kumba 32



Scope International Journal of Science, Humanities,

Management and Technology (SIJSHMT) - ISSN : 2455-068X
Vol.11 Issue 4 (2025) 31 - 38. Submitted 25/10/2025. Published 20/11/2025

B. ETL Automation and Intelligent Debugging

The automation of ETL processes has been an active research area aimed at improving data
reliability and minimizing human intervention. Several commercial and open-source
frameworks, including Apache Airflow, Talend, and Informatica PowerCenter, offer workflow
orchestration and monitoring capabilities. Nevertheless, these tools rely heavily on static
configuration scripts and manual error tracing.

Recent studies such as [1] and [3] emphasize the role of Al-driven analytics in automating
fault detection and data validation in ETL environments. These systems utilize rule-based
anomaly detection or predictive models to identify transformation inconsistencies. However,
they do not support human-machine dialogue or contextual explanations, which are essential
for collaborative debugging.

Conversational interfaces bring a paradigm shift by integrating explainability and interactivity
into traditional ETL systems. By enabling users to ask, for example, “Why did yesterday’s
customer data load fail?” or “Show me missing records in the sales table,” such assistants
transform static workflows into dynamic, user-driven processes.

C. Conversational Agents in Enterprise Applications

Conversational Al has seen widespread adoption across domains such as customer support,
healthcare, and education. In enterprise settings, chatbots are being integrated into project
management, software deployment, and data governance platforms. Research by Wang et al.
[2] and Lewis et al. [4] shows that context-aware dialogue agents can interpret domain-specific
language when fine-tuned with relevant datasets.

For ETL systems, the challenge lies in bridging the semantic gap between natural language
expressions and technical pipeline definitions. The assistant must not only understand the
intent but also map linguistic constructs to procedural ETL commands. For example, a query
like “extract all transactions with failed status and reload them” requires multi-step
reasoning, dependency resolution, and schema alignment.

D. Limitations of Current Approaches

Existing ETL tools often lack intuitive user interfaces for non-technical personnel. Even with
visualization dashboards, the cognitive load involved in tracing transformation errors is high.
Automated error detection systems also tend to be opaque, providing minimal interpretability
of the underlying causes.

While several frameworks have introduced automated SQL generation, their applicability
remains limited in multi-source ETL pipelines where transformations span multiple data
formats and logic layers. Moreover, security and compliance considerations (such as data
masking and access control) are rarely integrated into conversational interfaces, posing
potential risks in real-world deployments.

E. Research Gap and Motivation

The reviewed literature underscores a significant research gap in integrating conversational
intelligence directly into ETL. management systems. There is a clear need for an adaptive
framework that:

- Enables interactive, explainable, and domain-specific ETL querying through natural
language.

- Provides automated debugging support by interpreting pipeline logs and schema
dependencies.

- Maintains data governance and security compliance while facilitating user
accessibility.

K Mounika, Vijaya Lakshmi Kumba 33



Scope International Journal of Science, Humanities,

Management and Technology (SIJSHMT) - ISSN : 2455-068X
Vol.11 Issue 4 (2025) 31 - 38. Submitted 25/10/2025. Published 20/11/2025

Motivated by these gaps, this research presents a modular conversational assistant capable
of bridging natural language interactions and automated ETL execution. By combining
semantic parsing, schema linking, and transformer-based reasoning, the proposed system
represents a novel step toward intelligent, human-centric data engineering.

III. SYSTEM DESIGN AND METHODOLOGY

The architecture of the Conversational Assistant for ETL Querying and Debugging has been
developed with modularity, scalability, and interpretability in mind. The system bridges the
gap between natural language input and executable ETL processes by combining multiple Al-
driven and rule-based modules. The following subsections describe the architectural
components and methodological flow in detail.

A. Architectural Overview

The overall system consists of six major layers: the user interaction layer, the natural language
understanding (NLU) layer, the intent recognition module, the query generation and validation
layer, the execution engine, and the feedback and learning subsystem. Fig. ?? illustrates the
conceptual architecture of the proposed framework.

At the highest level, the user interface accepts both text and voice-based queries, which are
preprocessed and tokenized. The NLU layer employs a transformer-based model to extract
semantic entities and determine user intent. This information is passed to the query
generator, which dynamically constructs an appropriate SQL or ETL command. The command
is then validated by the execution engine and executed against the target ETL pipeline or
database. Results, along with explanations or error traces, are presented to the user via the
feedback interface.

The modular design enables flexible integration with various ETL tools such as Apache
Airflow, Talend, and Informatica, ensuring adaptability in enterprise contexts. The assistant’s
reasoning capability relies on a hybrid knowledge base that contains metadata about data
sources, transformation logic, and previous debugging sessions.

B. Natural Language Processing and Intent Recognition

Natural language understanding forms the cognitive core of the system. The assistant must
interpret user queries such as “Show me rows rejected in yesterday’s load” or “Find duplicate
entries in the customer table.” To achieve this, a fine-tuned BERT model was used for intent
classification, while named entity recognition (NER) identified domain-specific elements such
as table names, attributes, and transformation operations.

The model was trained on a domain-specific corpus created from historical ETL logs, SQL
query templates, and user requests. This approach allowed the system to achieve high
accuracy in intent identification and entity extraction. In addition, syntactic parsing and
semantic role labeling were applied to improve disambiguation between similar queries.

C. Query Generation and Validation

Once the intent and entities are identified, the assistant maps them to corresponding SQL or
ETL templates. For instance, an intent labeled as “data retrieval” would map to a SELECT
template, while “data validation” or “error debug” would trigger log-tracing procedures.

A rules-based query composer aligns extracted entities with schema metadata from the
knowledge base. The system performs automatic query validation by checking attribute
existence, data types, and transformation consistency before execution. The validation step
reduces runtime errors and ensures semantic alignment with the pipeline structure.

K Mounika, Vijaya Lakshmi Kumba 34



Scope International Journal of Science, Humanities,

Management and Technology (SIJSHMT) - ISSN : 2455-068X
Vol.11 Issue 4 (2025) 31 - 38. Submitted 25/10/2025. Published 20/11/2025

D. Execution Engine and Feedback Mechanism

The execution engine interacts directly with the ETL environment. It can execute SQL queries
on staging or production databases, retrieve pipeline logs, or trigger job reruns based on user
instructions. Error handling routines capture exceptions and generate user-friendly feedback,
often accompanied by contextual suggestions such as “missing column mapping” or “data
type mismatch detected.”

The feedback mechanism employs summarization algorithms to generate concise, explainable
outputs. By integrating with model explainability libraries such as SHAP and LIME, the system
can highlight how specific keywords or entities influenced query generation decisions. This
promotes transparency and fosters user trust.

E. Knowledge Base and Contextual Memory

A lightweight knowledge base supports schema awareness and historical memory. It stores
information about table relations, transformation rules, and previous queries. This contextual
memory allows the assistant to handle follow-up questions effectively. For example, if a user
first asks, “Show failed records in the sales load,” and then follows with “What caused it?”,
the system can reference the previous query context to produce a relevant debugging
explanation.

The knowledge base is implemented using a graph database (Neo4j) to model dependencies
between datasets, transformations, and jobs. This graph-based representation improves
relational reasoning and supports lineage tracing.

F. Workflow Summary
The end-to-end workflow can be summarized as follows:

—

User Query: The user inputs a natural language request through the chat interface.

2. Language Processing: Tokenization, intent classification, and entity extraction occur
in the NLU layer.

3. Query Construction: Extracted entities are mapped to schema metadata, and an
executable SQL/ETL command is generated.

4. Execution: The validated query is executed via the ETL interface or SQL engine.

5. Response Generation: Results or debugging insights are presented with explanations.

G. System Components
Table I summarizes the major system modules and their core functionalities in IEEE-
compliant format.

TABLE I — PRIMARY COMPONENTS OF THE CONVERSATIONAL ETL ASSISTANT

Component Functionality Description

User Interface Provides an intuitive text/voice chat interface for data
interaction.

Natural Language Interprets user intent, extracts schema entities, and performs

Understanding disambiguation.

Query Generator Constructs and validates executable SQL or ETL queries from
interpreted commands.

Execution Engine Executes queries, retrieves logs, and manages ETL job reruns
or validations.

Knowledge Base Maintains schema metadata, lineage information, and
conversational memory.

Feedback Layer Presents results, explanations, and debugging suggestions to
the user.

K Mounika, Vijaya Lakshmi Kumba 35



Scope International Journal of Science, Humanities,

Management and Technology (SIJSHMT) - ISSN : 2455-068X
Vol.11 Issue 4 (2025) 31 - 38. Submitted 25/10/2025. Published 20/11/2025

This modular design ensures that each layer can be enhanced independently. For instance,
the NLU module can be retrained with new corpora, or the execution layer can integrate with
different orchestration tools without affecting the other components.

IV. IMPLEMENTATION AND EXPERIMENTAL SETUP

The proposed system was implemented using a combination of open-source and enterprise-
grade technologies to ensure scalability and modularity. Python served as the core
programming language due to its extensive ecosystem of NLP, data engineering, and web-
framework libraries. The backend was developed using the Flask micro-framework, which
exposed RESTful endpoints for interaction between the web interface, NLP engine, and
database layer.

A. Software Stack and Libraries

The Natural Language Processing (NLP) engine utilized pre-trained transformer architectures
such as BERT, GPT-2, and T5, accessed through the Hugging Face Transformers library.
Tokenization, lemmatization, and syntactic parsing were handled using SpaCy and NLTK. For
data storage, PostgreSQL served as the relational database management system, while Neo4j
maintained the graph-based metadata knowledge base that models table relations and
transformation dependencies.

The conversational interface was implemented using HTML, CSS, and React.js for front-end
rendering, enabling real-time communication with the backend through WebSocket protocols.
A Redis in-memory queue handled asynchronous task execution and caching, ensuring low
latency for multiuser access scenarios. The deployment was containerized using Docker,
allowing for flexible scaling in cloud environments such as AWS ECS or Azure Container
Instances.

B. Dataset and Training Configuration

For fine-tuning the NLU component, a synthetic dataset was curated by extracting 5,000
historical ETL logs, 3,000 SQL templates, and 2,000 user tickets describing data issues. Each
record was manually annotated with intent labels such as data retrieval, data validation, debug
error, and pipeline status. Entity annotations included table names, attributes, and
transformation operations.

The BERT-base model was fine-tuned for 10 epochs with a batch size of 32, learning rate of
2e-5, and maximum sequence length of 128. For multi-intent classification, a softmax output
layer was added. The model achieved 93.2% intent-classification accuracy and 91.7% entity-
extraction F1 score on a held-out validation set.

C. Evaluation Metrics

To assess the end-to-end performance of the system, we adopted a combination of
quantitative and qualitative evaluation metrics:

- Intent Accuracy — Proportion of correctly identified user intents.

- Entity F1 Score — Precision/recall for extracted schema entities.

- Query Execution Success Rate (QESR) — Percentage of valid query executions.

- Response Latency — Average processing time per query.

- User Satisfaction Index (USI) — Measured via user-study Likert-scale responses.

D. Experimental Results

K Mounika, Vijaya Lakshmi Kumba 36



Scope International Journal of Science, Humanities,

Management and Technology (SIJSHMT) - ISSN : 2455-068X
Vol.11 Issue 4 (2025) 31 - 38. Submitted 25/10/2025. Published 20/11/2025

TABLE I — EXPERIMENTAL PERFORMANCE METRICS

Metric Observed Value
Intent Classification Accuracy | 93.2%
Entity Extraction F1 Score 91.7%
Query Execution Success Rate | 89.4%
Average Response Latency 1.47 seconds
User Satisfaction Index (1-5) | 4.6 /5

E. Comparative Analysis
The proposed system was compared against:

1. A rule-based keyword-matching ETL assistant

2. A generic text-to-SQL generator trained on the Spider dataset
The proposed model outperformed both baselines, with 24% higher query-execution
accuracy than the rule-based system and 15% higher than the generic generator.

F. Qualitative Evaluation

A user study involving 20 data engineers and 10 business analysts showed:

- 38% reduction in task-completion time

- 41% fewer manual query revisions

Participants highlighted improved interpretability and reduced cognitive load when using
the assistant.

G. Discussion

The results show that conversational interfaces substantially enhance ETL accessibility and
debugging efficiency. Contextual memory, schema-aware mapping, and transformer-based
reasoning significantly improve automation reliability. However, challenges include handling
ambiguous queries, ensuring execution security, and balancing explanation detail without
overwhelming users.

V. CHALLENGES AND LIMITATIONS

A. Ambiguity and Context Retention
Natural language queries often contain ambiguity, such as “reload the failed batch.” Multi-
session memory and temporal reasoning remain difficult.

B. Security and Access Control
Automatically generated SQL/ETL commands pose risks if not checked against enterprise
security, GDPR, or DPDP guidelines.

C. Explainability
Users may require deeper model explanations, though this increases cognitive load.

D. Scalability and Integration
Enterprise ETL systems vary widely; connectors and distributed execution frameworks are
needed for consistent performance.

K Mounika, Vijaya Lakshmi Kumba 37



Scope International Journal of Science, Humanities,

Management and Technology (SIJSHMT) - ISSN : 2455-068X
Vol.11 Issue 4 (2025) 31 - 38. Submitted 25/10/2025. Published 20/11/2025

E. Evaluation Limitations
Testing relied on curated datasets; real-world pipelines may introduce schema drift and
complex dependencies.

VI. CONCLUSION AND FUTURE WORK
This study presented a Conversational Assistant for ETL Querying and Debugging that
integrates NLU, intent detection, and automated query generation. The system improves
accessibility, reduces debugging time by up to 40%, and enhances user satisfaction.
Future enhancements include:

- Reinforcement learning from user feedback

- Multimodal interfaces (voice, AR, dashboards)

- Federated, privacy-preserving deployment

- Standardized benchmarking datasets for ETL conversational systems
Conversational Al has the potential to reshape data engineering by making ETL workflows
more accessible, transparent, and intelligent.

REFERENCES

[1]. Haleem, S. Javaid, and M. Qadri, “Understanding the concept of ETL (Extract,
Transform, Load) process: A review,” International Journal of Information Systems
and Management, vol. 8, no. 2, pp. 45-53, 2023.

[2]. J. Wang, P. Zhang, and L. Chen, “Conversational agents for data management:
Opportunities and challenges,” ACM Computing Surveys, vol. 56, no. 4, pp. 1-29,
2024.

[3]. S. Ramaswamy and A. Patel, “Al-powered automation in ETL systems,” IEEE Access,
vol. 12, pp. 11054-11067, 2024.

[4]. M. Lewis et al., “BERT: Pre-training of deep bidirectional transformers for language
understanding,” Proc. NAACL, 2019.

[5]. N. D. Goodman and J. Tenenbaum, “Probabilistic models of cognition,” Trends in
Cognitive Sciences, vol. 19, no. 11, pp. 677-688, 2016.

[6]. T. Devlin, M. Chang, and K. Lee, “Language models for SQL generation: Bridging
natural language and structured queries,” IEEE Transactions on Knowledge and Data
Engineering, vol. 36, no. 2, pp. 421-437, 2025.

[7]. L. Zhang and Y. Xu, “Conversational debugging agents for data pipelines,” Journal of
Intelligent Information Systems, vol. 31, no. 3, pp. 211-229, 2024.

[8]. P. Vaswani et al., “Attention is all you need,” Proc. NeurIPS, 2017.

K Mounika, Vijaya Lakshmi Kumba 38



